These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 38234609)
1. Comprehensive analysis and immunohistochemistry localization of NRP1 expression in pancancer and normal individual tissues in relation to SARS‑CoV‑2 susceptibility. Fu J; He J; Zhang L; Cheng J; Zhang P; Wei C; Fu J; Li D Exp Ther Med; 2024 Feb; 27(2):52. PubMed ID: 38234609 [TBL] [Abstract][Full Text] [Related]
2. APOBEC3C is a novel target for the immune treatment of lower-grade gliomas. Zhao S; Li Y; Xu J; Shen L Neurol Res; 2024 Mar; 46(3):227-242. PubMed ID: 38007705 [TBL] [Abstract][Full Text] [Related]
3. Identification of SHCBP1 as a potential biomarker involving diagnosis, prognosis, and tumor immune microenvironment across multiple cancers. Wang N; Zhu L; Wang L; Shen Z; Huang X Comput Struct Biotechnol J; 2022; 20():3106-3119. PubMed ID: 35782736 [TBL] [Abstract][Full Text] [Related]
4. Distinct Roles of Adenosine Deaminase Isoenzymes ADA1 and ADA2: A Pan-Cancer Analysis. Gao ZW; Yang L; Liu C; Wang X; Guo WT; Zhang HZ; Dong K Front Immunol; 2022; 13():903461. PubMed ID: 35663977 [TBL] [Abstract][Full Text] [Related]
5. Comprehensive analysis of the novel omicron receptor AXL in cancers. Zhang WN; Li XP; Wang PF; Zhu L; Xiao XH; Dai YJ Comput Struct Biotechnol J; 2022; 20():3304-3312. PubMed ID: 35782741 [TBL] [Abstract][Full Text] [Related]
6. The molecular feature of macrophages in tumor immune microenvironment of glioma patients. Zhang H; Luo YB; Wu W; Zhang L; Wang Z; Dai Z; Feng S; Cao H; Cheng Q; Liu Z Comput Struct Biotechnol J; 2021; 19():4603-4618. PubMed ID: 34471502 [TBL] [Abstract][Full Text] [Related]
7. Violations of proportional hazard assumption in Cox regression model of transcriptomic data in TCGA pan-cancer cohorts. Zeng Z; Gao Y; Li J; Zhang G; Sun S; Wu Q; Gong Y; Xie C Comput Struct Biotechnol J; 2022; 20():496-507. PubMed ID: 35070171 [TBL] [Abstract][Full Text] [Related]
8. PreMSIm: An R package for predicting microsatellite instability from the expression profiling of a gene panel in cancer. Li L; Feng Q; Wang X Comput Struct Biotechnol J; 2020; 18():668-675. PubMed ID: 32257050 [TBL] [Abstract][Full Text] [Related]
9. Identifies microtubule-binding protein Wang W; Zhang J; Wang Y; Xu Y; Zhang S Comput Struct Biotechnol J; 2022; 20():3322-3335. PubMed ID: 35832625 [TBL] [Abstract][Full Text] [Related]
10. Advancing Pan-cancer Gene Expression Survial Analysis by Inclusion of Non-coding RNA. Ye B; Shi J; Kang H; Oyebamiji O; Hill D; Yu H; Ness S; Ye F; Ping J; He J; Edwards J; Zhao YY; Guo Y RNA Biol; 2020 Nov; 17(11):1666-1673. PubMed ID: 31607216 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive analysis of tumor necrosis factor-α-inducible protein 8-like 2 (TIPE2): A potential novel pan-cancer immune checkpoint. Bai KH; Zhang YY; Li XP; Tian XP; Pan MM; Wang DW; Dai YJ Comput Struct Biotechnol J; 2022; 20():5226-5234. PubMed ID: 36187930 [TBL] [Abstract][Full Text] [Related]
12. Integrative omics analysis reveals relationships of genes with synthetic lethal interactions through a pan-cancer analysis. Guo L; Li S; Qian B; Wang Y; Duan R; Jiang W; Kang Y; Dou Y; Yang G; Shen L; Wang J; Liang T Comput Struct Biotechnol J; 2020; 18():3243-3254. PubMed ID: 33240468 [TBL] [Abstract][Full Text] [Related]
13. Pan-Cancer Analysis of PARP1 Alterations as Biomarkers in the Prediction of Immunotherapeutic Effects and the Association of Its Expression Levels and Immunotherapy Signatures. Zhang X; Wang Y; A G; Qu C; Chen J Front Immunol; 2021; 12():721030. PubMed ID: 34531868 [TBL] [Abstract][Full Text] [Related]
14. Pan‑cancer analysis of transmembrane protease serine 2 and cathepsin L that mediate cellular SARS‑CoV‑2 infection leading to COVID-19. Katopodis P; Anikin V; Randeva HS; Spandidos DA; Chatha K; Kyrou I; Karteris E Int J Oncol; 2020 Aug; 57(2):533-539. PubMed ID: 32468052 [TBL] [Abstract][Full Text] [Related]
15. Systematic pan-cancer analyses of the potential function of the Golgi scaffold protein PAQR3. Ling ZN; Hong LL; Wu J; Ling ZQ Sci Rep; 2024 Feb; 14(1):3030. PubMed ID: 38321173 [TBL] [Abstract][Full Text] [Related]
16. COVID‑19 and SARS‑CoV‑2 host cell entry mediators: Expression profiling of TMRSS4 in health and disease. Katopodis P; Kerslake R; Davies J; Randeva HS; Chatha K; Hall M; Spandidos DA; Anikin V; Polychronis A; Robertus JL; Kyrou I; Karteris E Int J Mol Med; 2021 Apr; 47(4):. PubMed ID: 33649798 [TBL] [Abstract][Full Text] [Related]
17. Natural Product Cordycepin (CD) Inhibition for NRP1/CD304 Expression and Possibly SARS-CoV-2 Susceptibility Prevention on Cancers. Li T; Luo N; Fu J; Du J; Liu Z; Tan Q; Zheng M; He J; Cheng J; Li D; Fu J Microorganisms; 2023 Dec; 11(12):. PubMed ID: 38138098 [TBL] [Abstract][Full Text] [Related]
18. The SARS-CoV-2 host cell receptor ACE2 correlates positively with immunotherapy response and is a potential protective factor for cancer progression. Zhang Z; Li L; Li M; Wang X Comput Struct Biotechnol J; 2020; 18():2438-2444. PubMed ID: 32905022 [TBL] [Abstract][Full Text] [Related]
19. Rewired functional regulatory networks among miRNA isoforms (isomiRs) from let-7 and miR-10 gene families in cancer. Liang T; Han L; Guo L Comput Struct Biotechnol J; 2020; 18():1238-1248. PubMed ID: 32542110 [TBL] [Abstract][Full Text] [Related]
20. Effect of DPP4/CD26 expression on SARS‑CoV‑2 susceptibility, immune response, adenosine (derivatives m Du J; Fu J; Zhang W; Zhang L; Chen H; Cheng J; He T; Fu J Int J Oncol; 2023 Mar; 62(3):. PubMed ID: 36799191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]