BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 38234785)

  • 1. Multi-contrast high-field quality image synthesis for portable low-field MRI using generative adversarial networks and paired data.
    Lucas A; Campbell Arnold T; Okar SV; Vadali C; Kawatra KD; Ren Z; Cao Q; Shinohara RT; Schindler MK; Davis KA; Litt B; Reich DS; Stein JM
    medRxiv; 2023 Dec; ():. PubMed ID: 38234785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of portable low-field magnetic resonance imaging for multiple sclerosis lesions.
    Arnold TC; Tu D; Okar SV; Nair G; By S; Kawatra KD; Robert-Fitzgerald TE; Desiderio LM; Schindler MK; Shinohara RT; Reich DS; Stein JM
    Neuroimage Clin; 2022; 35():103101. PubMed ID: 35792417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving portable low-field MRI image quality through image-to-image translation using paired low- and high-field images.
    Islam KT; Zhong S; Zakavi P; Chen Z; Kavnoudias H; Farquharson S; Durbridge G; Barth M; McMahon KL; Parizel PM; Dwyer A; Egan GF; Law M; Chen Z
    Sci Rep; 2023 Dec; 13(1):21183. PubMed ID: 38040835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-fidelity fast volumetric brain MRI using synergistic wave-controlled aliasing in parallel imaging and a hybrid denoising generative adversarial network (HDnGAN).
    Li Z; Tian Q; Ngamsombat C; Cartmell S; Conklin J; Filho ALMG; Lo WC; Wang G; Ying K; Setsompop K; Fan Q; Bilgic B; Cauley S; Huang SY
    Med Phys; 2022 Feb; 49(2):1000-1014. PubMed ID: 34961944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesized 7T MPRAGE From 3T MPRAGE Using Generative Adversarial Network and Validation in Clinical Brain Imaging: A Feasibility Study.
    Duan C; Bian X; Cheng K; Lyu J; Xiong Y; Xiao S; Wang X; Duan Q; Li C; Huang J; Hu J; Wang ZJ; Zhou X; Lou X
    J Magn Reson Imaging; 2024 May; 59(5):1620-1629. PubMed ID: 37559435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation.
    Hagiwara A; Otsuka Y; Hori M; Tachibana Y; Yokoyama K; Fujita S; Andica C; Kamagata K; Irie R; Koshino S; Maekawa T; Chougar L; Wada A; Takemura MY; Hattori N; Aoki S
    AJNR Am J Neuroradiol; 2019 Feb; 40(2):224-230. PubMed ID: 30630834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving segmentation reliability of multi-scanner brain images using a generative adversarial network.
    Niu K; Li X; Zhang L; Yan Z; Yu W; Liang P; Wang Y; Lin CP; Zhang H; Guo C; Li K; Qian T
    Quant Imaging Med Surg; 2022 Mar; 12(3):1775-1786. PubMed ID: 35284270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bridging the gap: improving correspondence between low-field and high-field magnetic resonance images in young people.
    Cooper R; Hayes RA; Corcoran M; Sheth KN; Arnold TC; Stein JM; Glahn DC; Jalbrzikowski M
    Front Neurol; 2024; 15():1339223. PubMed ID: 38585353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncertainty-Aware and Lesion-Specific Image Synthesis in Multiple Sclerosis Magnetic Resonance Imaging: A Multicentric Validation Study.
    Finck T; Li H; Schlaeger S; Grundl L; Sollmann N; Bender B; Bürkle E; Zimmer C; Kirschke J; Menze B; Mühlau M; Wiestler B
    Front Neurosci; 2022; 16():889808. PubMed ID: 35557607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using a generative adversarial network to generate synthetic MRI images for multi-class automatic segmentation of brain tumors.
    Raut P; Baldini G; Schöneck M; Caldeira L
    Front Radiol; 2023; 3():1336902. PubMed ID: 38304344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FLAIR-only joint volumetric analysis of brain lesions and atrophy in clinically isolated syndrome (CIS) suggestive of multiple sclerosis.
    Goodkin O; Prados F; Vos SB; Pemberton H; Collorone S; Hagens MHJ; Cardoso MJ; Yousry TA; Thornton JS; Sudre CH; Barkhof F;
    Neuroimage Clin; 2021; 29():102542. PubMed ID: 33418171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Brain Morphometry of Portable Low-Field-Strength MRI Using Super-Resolution Machine Learning.
    Iglesias JE; Schleicher R; Laguna S; Billot B; Schaefer P; McKaig B; Goldstein JN; Sheth KN; Rosen MS; Kimberly WT
    Radiology; 2023 Mar; 306(3):e220522. PubMed ID: 36346311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated separation of diffusely abnormal white matter from focal white matter lesions on MRI in multiple sclerosis.
    Maranzano J; Dadar M; Zhernovaia M; Arnold DL; Collins DL; Narayanan S
    Neuroimage; 2020 Jun; 213():116690. PubMed ID: 32119987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic T2-weighted fat sat based on a generative adversarial network shows potential for scan time reduction in spine imaging in a multicenter test dataset.
    Schlaeger S; Drummer K; El Husseini M; Kofler F; Sollmann N; Schramm S; Zimmer C; Wiestler B; Kirschke JS
    Eur Radiol; 2023 Aug; 33(8):5882-5893. PubMed ID: 36928566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep learning approach for synthetic MRI based on two routine sequences and training with synthetic data.
    Moya-Sáez E; Peña-Nogales Ó; Luis-García R; Alberola-López C
    Comput Methods Programs Biomed; 2021 Oct; 210():106371. PubMed ID: 34525411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning.
    Narayana PA; Coronado I; Sujit SJ; Sun X; Wolinsky JS; Gabr RE
    Magn Reson Imaging; 2020 Jan; 65():8-14. PubMed ID: 31670238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of multicontrast MR images through deep learning.
    Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH
    Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T1-weighted and T2-weighted MRI image synthesis with convolutional generative adversarial networks.
    Kawahara D; Nagata Y
    Rep Pract Oncol Radiother; 2021; 26(1):35-42. PubMed ID: 33948300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MRI image synthesis for fluid-attenuated inversion recovery and diffusion-weighted images with deep learning.
    Kawahara D; Yoshimura H; Matsuura T; Saito A; Nagata Y
    Phys Eng Sci Med; 2023 Mar; 46(1):313-323. PubMed ID: 36715853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesizing high-resolution magnetic resonance imaging using parallel cycle-consistent generative adversarial networks for fast magnetic resonance imaging.
    Xie H; Lei Y; Wang T; Roper J; Dhabaan AH; Bradley JD; Liu T; Mao H; Yang X
    Med Phys; 2022 Jan; 49(1):357-369. PubMed ID: 34821395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.