These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 38234802)
1. Fine-tuning Large Language Models for Rare Disease Concept Normalization. Wang A; Liu C; Yang J; Weng C bioRxiv; 2024 Jun; ():. PubMed ID: 38234802 [TBL] [Abstract][Full Text] [Related]
2. Fine-tuning large language models for rare disease concept normalization. Wang A; Liu C; Yang J; Weng C J Am Med Inform Assoc; 2024 Sep; 31(9):2076-2083. PubMed ID: 38829731 [TBL] [Abstract][Full Text] [Related]
3. A new synonym-substitution method to enrich the human phenotype ontology. Taboada M; Rodriguez H; Gudivada RC; Martinez D BMC Bioinformatics; 2017 Oct; 18(1):446. PubMed ID: 29017443 [TBL] [Abstract][Full Text] [Related]
4. Fine-Tuning Bidirectional Encoder Representations From Transformers (BERT)-Based Models on Large-Scale Electronic Health Record Notes: An Empirical Study. Li F; Jin Y; Liu W; Rawat BPS; Cai P; Yu H JMIR Med Inform; 2019 Sep; 7(3):e14830. PubMed ID: 31516126 [TBL] [Abstract][Full Text] [Related]
5. Development of a Consumer Health Vocabulary by Mining Health Forum Texts Based on Word Embedding: Semiautomatic Approach. Gu G; Zhang X; Zhu X; Jian Z; Chen K; Wen D; Gao L; Zhang S; Wang F; Ma H; Lei J JMIR Med Inform; 2019 May; 7(2):e12704. PubMed ID: 31124461 [TBL] [Abstract][Full Text] [Related]
6. Mapping vaccine names in clinical trials to vaccine ontology using cascaded fine-tuned domain-specific language models. Li J; Li Y; Pan Y; Guo J; Sun Z; Li F; He Y; Tao C J Biomed Semantics; 2024 Aug; 15(1):14. PubMed ID: 39123237 [TBL] [Abstract][Full Text] [Related]
7. Identifying Clinical Terms in Medical Text Using Ontology-Guided Machine Learning. Arbabi A; Adams DR; Fidler S; Brudno M JMIR Med Inform; 2019 May; 7(2):e12596. PubMed ID: 31094361 [TBL] [Abstract][Full Text] [Related]
8. An automated method to enrich consumer health vocabularies using GloVe word embeddings and an auxiliary lexical resource. Ibrahim M; Gauch S; Salman O; Alqahtani M PeerJ Comput Sci; 2021; 7():e668. PubMed ID: 34458573 [TBL] [Abstract][Full Text] [Related]
9. Mapping Vaccine Names in Clinical Trials to Vaccine Ontology using Cascaded Fine-Tuned Domain-Specific Language Models. Li J; Li Y; Pan Y; Guo J; Sun Z; Li F; He Y; Tao C Res Sq; 2023 Sep; ():. PubMed ID: 37841880 [TBL] [Abstract][Full Text] [Related]
10. Data-driven method to enhance craniofacial and oral phenotype vocabularies. Mishra R; Burke A; Gitman B; Verma P; Engelstad M; Haendel MA; Alevizos I; Gahl WA; Collins MT; Lee JS; Sincan M J Am Dent Assoc; 2019 Nov; 150(11):933-939.e2. PubMed ID: 31668172 [TBL] [Abstract][Full Text] [Related]
11. A method for named entity normalization in biomedical articles: application to diseases and plants. Cho H; Choi W; Lee H BMC Bioinformatics; 2017 Oct; 18(1):451. PubMed ID: 29029598 [TBL] [Abstract][Full Text] [Related]
12. Identifying and Extracting Rare Diseases and Their Phenotypes with Large Language Models. Shyr C; Hu Y; Bastarache L; Cheng A; Hamid R; Harris P; Xu H J Healthc Inform Res; 2024 Jun; 8(2):438-461. PubMed ID: 38681753 [TBL] [Abstract][Full Text] [Related]
13. PhenoTagger: a hybrid method for phenotype concept recognition using human phenotype ontology. Luo L; Yan S; Lai PT; Veltri D; Oler A; Xirasagar S; Ghosh R; Similuk M; Robinson PN; Lu Z Bioinformatics; 2021 Jul; 37(13):1884-1890. PubMed ID: 33471061 [TBL] [Abstract][Full Text] [Related]
14. EYE-Llama, an in-domain large language model for ophthalmology. Haghighi T; Gholami S; Sokol JT; Kishnani E; Ahsaniyan A; Rahmanian H; Hedayati F; Leng T; Alam MN bioRxiv; 2024 Apr; ():. PubMed ID: 38746183 [TBL] [Abstract][Full Text] [Related]
15. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology. Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713 [TBL] [Abstract][Full Text] [Related]
16. Enhancing Phenotype Recognition in Clinical Notes Using Large Language Models: PhenoBCBERT and PhenoGPT. Yang J; Liu C; Deng W; Wu D; Weng C; Zhou Y; Wang K ArXiv; 2023 Nov; ():. PubMed ID: 37986722 [TBL] [Abstract][Full Text] [Related]
17. Enhancing phenotype recognition in clinical notes using large language models: PhenoBCBERT and PhenoGPT. Yang J; Liu C; Deng W; Wu D; Weng C; Zhou Y; Wang K Patterns (N Y); 2024 Jan; 5(1):100887. PubMed ID: 38264716 [TBL] [Abstract][Full Text] [Related]
18. Automatic concept recognition using the human phenotype ontology reference and test suite corpora. Groza T; Köhler S; Doelken S; Collier N; Oellrich A; Smedley D; Couto FM; Baynam G; Zankl A; Robinson PN Database (Oxford); 2015; 2015():. PubMed ID: 25725061 [TBL] [Abstract][Full Text] [Related]
19. MCN: A comprehensive corpus for medical concept normalization. Luo YF; Sun W; Rumshisky A J Biomed Inform; 2019 Apr; 92():103132. PubMed ID: 30802545 [TBL] [Abstract][Full Text] [Related]