These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 38234902)
1. Mesenchymal stem cells aligned and stretched in self-assembling peptide hydrogels. Fouladgar F; Zadeh Moslabeh FG; Kasani YV; Rogozinski N; Torres M; Ecker M; Yang H; Yang Y; Habibi N Heliyon; 2024 Jan; 10(1):e23953. PubMed ID: 38234902 [TBL] [Abstract][Full Text] [Related]
2. Self-Assembled Peptide-Based Hydrogels as Scaffolds for Proliferation and Multi-Differentiation of Mesenchymal Stem Cells. Wang YL; Lin SP; Nelli SR; Zhan FK; Cheng H; Lai TS; Yeh MY; Lin HC; Hung SC Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27792283 [TBL] [Abstract][Full Text] [Related]
3. Structural, mechanical, and biological characterization of hierarchical nanofibrous Fmoc-phenylalanine-valine hydrogels for 3D culture of differentiated and mesenchymal stem cells. Najafi H; Tamaddon AM; Abolmaali S; Borandeh S; Azarpira N Soft Matter; 2021 Jan; 17(1):57-67. PubMed ID: 33001116 [TBL] [Abstract][Full Text] [Related]
5. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Zhou M; Smith AM; Das AK; Hodson NW; Collins RF; Ulijn RV; Gough JE Biomaterials; 2009 May; 30(13):2523-30. PubMed ID: 19201459 [TBL] [Abstract][Full Text] [Related]
6. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Heo DN; Hospodiuk M; Ozbolat IT Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326 [TBL] [Abstract][Full Text] [Related]
7. Comparing Single Cell Versus Pellet Encapsulation of Mesenchymal Stem Cells in Three-Dimensional Hydrogels for Cartilage Regeneration. Rogan H; Ilagan F; Yang F Tissue Eng Part A; 2019 Oct; 25(19-20):1404-1412. PubMed ID: 30672386 [TBL] [Abstract][Full Text] [Related]
8. De novo design of self-assembly hydrogels based on Fmoc-diphenylalanine providing drug release. Li X; Zhang H; Liu L; Cao C; Wei P; Yi X; Zhou Y; Lv Q; Zhou D; Yi T J Mater Chem B; 2021 Oct; 9(41):8686-8693. PubMed ID: 34617098 [TBL] [Abstract][Full Text] [Related]
9. Delivery of MSCs with a Hybrid β-Sheet Peptide Hydrogel Consisting IGF-1C Domain and D-Form Peptide for Acute Kidney Injury Therapy. Wang H; Shang Y; Chen X; Wang Z; Zhu D; Liu Y; Zhang C; Chen P; Wu J; Wu L; Kong D; Yang Z; Li Z; Chen X Int J Nanomedicine; 2020; 15():4311-4324. PubMed ID: 32606679 [TBL] [Abstract][Full Text] [Related]
10. Peptide-/Drug-Directed Self-Assembly of Hybrid Polyurethane Hydrogels for Wound Healing. Zhang F; Hu C; Kong Q; Luo R; Wang Y ACS Appl Mater Interfaces; 2019 Oct; 11(40):37147-37155. PubMed ID: 31513742 [TBL] [Abstract][Full Text] [Related]
11. Integrin receptor-binding nanofibrous peptide hydrogel for combined mesenchymal stem cell therapy and nitric oxide delivery in renal ischemia/reperfusion injury. Najafi H; Abolmaali SS; Heidari R; Valizadeh H; Tamaddon AM; Azarpira N Stem Cell Res Ther; 2022 Jul; 13(1):344. PubMed ID: 35883125 [TBL] [Abstract][Full Text] [Related]
12. Macromolecular modulation of a 3D hydrogel construct differentially regulates human stem cell tissue-to-tissue interface. Pereira DR; Silva-Correia J; Oliveira JM; Reis RL; Pandit A Biomater Adv; 2022 Feb; 133():112611. PubMed ID: 35527137 [TBL] [Abstract][Full Text] [Related]
13. Substrate stiffness and sequence dependent bioactive peptide hydrogels influence the chondrogenic differentiation of human mesenchymal stem cells. Mohammed M; Lai TS; Lin HC J Mater Chem B; 2021 Feb; 9(6):1676-1685. PubMed ID: 33491723 [TBL] [Abstract][Full Text] [Related]
14. Multicomponent Peptide-Based Hydrogels Containing Chemical Functional Groups as Innovative Platforms for Biotechnological Applications. Giordano S; Gallo E; Diaferia C; Rosa E; Carrese B; Borbone N; Scognamiglio PL; Franzese M; Oliviero G; Accardo A Gels; 2023 Nov; 9(11):. PubMed ID: 37998993 [TBL] [Abstract][Full Text] [Related]
16. Experimental study on self-assembly of KLD-12 peptide hydrogel and 3-D culture of MSC encapsulated within hydrogel in vitro. Sun J; Zheng Q J Huazhong Univ Sci Technolog Med Sci; 2009 Aug; 29(4):512-6. PubMed ID: 19662373 [TBL] [Abstract][Full Text] [Related]
17. In situ miRNA delivery from a hydrogel promotes osteogenesis of encapsulated mesenchymal stromal cells. Carthew J; Donderwinkel I; Shrestha S; Truong VX; Forsythe JS; Frith JE Acta Biomater; 2020 Jan; 101():249-261. PubMed ID: 31722255 [TBL] [Abstract][Full Text] [Related]
18. Titanium dioxide nanoparticles embedded in assembled dipeptide hydrogels for microfluidic photodegradation. Li Y; Zheng T; Du Y; Zhao B; Patel HP; Boldt R; Auernhammer GK; Fery A; Li J; Thiele J J Colloid Interface Sci; 2024 Jan; 654(Pt A):405-412. PubMed ID: 37852026 [TBL] [Abstract][Full Text] [Related]
19. Injectable Magnetic-Responsive Short-Peptide Supramolecular Hydrogels: Ex Vivo and In Vivo Evaluation. Mañas-Torres MC; Gila-Vilchez C; Vazquez-Perez FJ; Kuzhir P; Momier D; Scimeca JC; Borderie A; Goracci M; Burel-Vandenbos F; Blanco-Elices C; Rodriguez IA; Alaminos M; de Cienfuegos LÁ; Lopez-Lopez MT ACS Appl Mater Interfaces; 2021 Oct; 13(42):49692-49704. PubMed ID: 34645258 [TBL] [Abstract][Full Text] [Related]
20. Mechanical Enhancement and Kinetics Regulation of Fmoc-Diphenylalanine Hydrogels by Thioflavin T. Tikhonova TN; Rovnyagina NN; Arnon ZA; Yakimov BP; Efremov YM; Cohen-Gerassi D; Halperin-Sternfeld M; Kosheleva NV; Drachev VP; Svistunov AA; Timashev PS; Adler-Abramovich L; Shirshin EA Angew Chem Int Ed Engl; 2021 Nov; 60(48):25339-25345. PubMed ID: 34590774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]