These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38235075)

  • 1. Aza-BODIPY-based polymeric nanoparticles for photothermal cancer therapy in a chicken egg tumor model.
    Chansaenpak K; Yong GY; Prajit A; Hiranmartsuwan P; Selvapaandian S; Ouengwanarat B; Khrootkaew T; Pinyou P; Kue CS; Kamkaew A
    Nanoscale Adv; 2024 Jan; 6(2):406-417. PubMed ID: 38235075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilizing Intramolecular Photoinduced Electron Transfer to Enhance Photothermal Tumor Treatment of Aza-BODIPY-Based Near-Infrared Nanoparticles.
    Xu Y; Feng T; Yang T; Wei H; Yang H; Li G; Zhao M; Liu S; Huang W; Zhao Q
    ACS Appl Mater Interfaces; 2018 May; 10(19):16299-16307. PubMed ID: 29676558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PEGylated Aza-BODIPY Nanoparticles for Photothermal Therapy.
    Kampaengsri S; Chansaenpak K; Yong GY; Hiranmartsuwan P; Uengwanarat B; Lai RY; Meemon P; Kue CS; Kamkaew A
    ACS Appl Bio Mater; 2022 Sep; ():. PubMed ID: 36054220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional organic nanomaterials with ultra-high photothermal conversion efficiency for photothermal therapy and inhibition of cancer metastasis.
    Yang XZ; Wen LF; Xu G; Lin HH; Wang S; Liu JY
    Bioorg Chem; 2023 Jan; 130():106220. PubMed ID: 36347088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly stable organic photothermal agent based on near-infrared-II fluorophores for tumor treatment.
    Xu Y; Wang S; Chen Z; Hu R; Li S; Zhao Y; Liu L; Qu J
    J Nanobiotechnology; 2021 Feb; 19(1):37. PubMed ID: 33541369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revolutionary Pyrazole-based Aza-BODIPY: Harnessing Photothermal Power Against Cancer Cells and Bacteria.
    Pewklang T; Saiyasombat W; Chueakwon P; Ouengwanarat B; Chansaenpak K; Kampaengsri S; Lai RY; Kamkaew A
    Chembiochem; 2024 Feb; 25(3):e202300653. PubMed ID: 38095754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper sulfide nanoparticles with phospholipid-PEG coating for in vivo near-infrared photothermal cancer therapy.
    Huang Y; Lai Y; Shi S; Hao S; Wei J; Chen X
    Chem Asian J; 2015 Feb; 10(2):370-6. PubMed ID: 25425287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polydopamine encapsulated new indocyanine green theranostic nanoparticles for enhanced photothermal therapy in cervical cancer HeLa cells.
    Fan H; Yan T; Chen S; Du Z; Alimu G; Zhu L; Ma R; Tang X; Heng Y; Alifu N; Zhang X
    Front Bioeng Biotechnol; 2022; 10():984166. PubMed ID: 36213060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gadolinium-Chelated Conjugated Polymer-Based Nanotheranostics for Photoacoustic/Magnetic Resonance/NIR-II Fluorescence Imaging-Guided Cancer Photothermal Therapy.
    Hu X; Tang Y; Hu Y; Lu F; Lu X; Wang Y; Li J; Li Y; Ji Y; Wang W; Ye D; Fan Q; Huang W
    Theranostics; 2019; 9(14):4168-4181. PubMed ID: 31281539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Engineering of Near-Infrared Light-Responsive BODIPY-Based Nanoparticles with Enhanced Photothermal and Photoacoustic Efficiencies for Cancer Theranostics.
    Gao D; Zhang B; Liu Y; Hu D; Sheng Z; Zhang X; Yuan Z
    Theranostics; 2019; 9(18):5315-5331. PubMed ID: 31410217
    [No Abstract]   [Full Text] [Related]  

  • 11. Self-assembled porphyrin polymer nanoparticles with NIR-II emission and highly efficient photothermal performance in cancer therapy.
    Li C; Luo Z; Yang L; Chen J; Cheng K; Xue Y; Liu G; Luo X; Wu F
    Mater Today Bio; 2022 Jan; 13():100198. PubMed ID: 35024599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembled Aza-BODIPY and Iron(III) Nanoparticles for Photothermal-Enhanced Chemodynamic Therapy in the NIR-II Window.
    Zhang J; Li Y; Jiang M; Qiu H; Li Y; Gu M; Yin S
    ACS Biomater Sci Eng; 2023 Feb; 9(2):821-830. PubMed ID: 36725684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aza-BODIPY based polymeric nanoparticles for cancer cell imaging.
    Chansaenpak K; Tanjindaprateep S; Chaicharoenaudomrung N; Weeranantanapan O; Noisa P; Kamkaew A
    RSC Adv; 2018 Nov; 8(69):39248-39255. PubMed ID: 35558043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly efficient polydopamine encapsulated clinical ICG theranostic nanoplatform for enhanced photothermal therapy of cervical cancer.
    Du Z; Ma R; Chen S; Fan H; Heng Y; Yan T; Alimu G; Zhu L; Zhang X; Alifu N; Ma C
    Nanoscale Adv; 2022 Sep; 4(18):4016-4024. PubMed ID: 36133329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Stable and Multifunctional Aza-BODIPY-Based Phototherapeutic Agent for Anticancer Treatment.
    Xu Y; Zhao M; Zou L; Wu L; Xie M; Yang T; Liu S; Huang W; Zhao Q
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44324-44335. PubMed ID: 30508480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tumor-mitochondria dual targeted aza-BODIPY-based nanotheranostic agent for multimodal imaging-guided phototherapy.
    Chen D; Zhang J; Tang Y; Huang X; Shao J; Si W; Ji J; Zhang Q; Huang W; Dong X
    J Mater Chem B; 2018 Jul; 6(27):4522-4530. PubMed ID: 32254669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic chemo-photothermal cancer therapy of pH-responsive polymeric nanoparticles loaded IR825 and DTX with charge-reversal property.
    Wang X; Gu Y; Li Q; Xu Y; Shi Y; Wang Z; Xia M; Li J; Wang D
    Colloids Surf B Biointerfaces; 2022 Jan; 209(Pt 2):112164. PubMed ID: 34735859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Making the Brightest Ones Dim: Maximizing the Photothermal Conversion Efficiency of BODIPY-Based Photothermal Agents.
    Kim G; Luo Y; Shin M; Bouffard J; Bae J; Kim Y
    Adv Healthc Mater; 2024 Apr; ():e2400885. PubMed ID: 38573765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aza-BODIPY with two efficacious fragments for NIR light-driven photothermal therapy by triggering cancer cell apoptosis.
    Shao C; Gong X; Zhang D; Jiang XD; Du J; Wang G
    J Mater Chem B; 2023 Nov; 11(44):10625-10631. PubMed ID: 37920935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-Infrared Conjugated Polymers Containing Thermally Activated Delayed Fluorescence Units Enable Enhanced Photothermal Therapy.
    Xu Y; Chen B; Su D; Li J; Qi Q; Hu Y; Wang Q; Xia F; Lou X; Zhao Z; Dai J; Dong X; Zhou J
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56314-56327. PubMed ID: 37983087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.