BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38235123)

  • 1. CountShoots: Automatic Detection and Counting of Slash Pine New Shoots Using UAV Imagery.
    Hao X; Cao Y; Zhang Z; Tomasetto F; Yan W; Xu C; Luan Q; Li Y
    Plant Phenomics; 2023; 5():0065. PubMed ID: 38235123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enabling Breeding Selection for Biomass in Slash Pine Using UAV-Based Imaging.
    Song Z; Tomasetto F; Niu X; Yan WQ; Jiang J; Li Y
    Plant Phenomics; 2022; 2022():9783785. PubMed ID: 35541565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Pine Wilt Nematode from Drone Images Using UAV.
    Sun Z; Ibrayim M; Hamdulla A
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Needle Physiological Traits Using UAV Imagery for Breeding Selection of Slash Pine.
    Niu X; Song Z; Xu C; Wu H; Luan Q; Jiang J; Li Y
    Plant Phenomics; 2023; 5():0028. PubMed ID: 36939412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenomic selection in slash pine multi-temporally using UAV-multispectral imagery.
    Li Y; Yang X; Tong L; Wang L; Xue L; Luan Q; Jiang J
    Front Plant Sci; 2023; 14():1156430. PubMed ID: 37670863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic counting of rapeseed inflorescences using deep learning method and UAV RGB imagery.
    Li J; Li Y; Qiao J; Li L; Wang X; Yao J; Liao G
    Front Plant Sci; 2023; 14():1101143. PubMed ID: 36798713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated extraction of
    Ji Y; Yan E; Yin X; Song Y; Wei W; Mo D
    Front Plant Sci; 2022; 13():958940. PubMed ID: 36035664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early detection of pine wilt disease tree candidates using time-series of spectral signatures.
    Yu R; Huo L; Huang H; Yuan Y; Gao B; Liu Y; Yu L; Li H; Yang L; Ren L; Luo Y
    Front Plant Sci; 2022; 13():1000093. PubMed ID: 36311089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pine wilt disease detection algorithm based on improved YOLOv5.
    Du Z; Wu S; Wen Q; Zheng X; Lin S; Wu D
    Front Plant Sci; 2024; 15():1302361. PubMed ID: 38699534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant regeneration through multiple adventitious shoot differentiation from callus cultures of slash pine (Pinus elliottii).
    Tang W; Newton RJ; Charles TM
    J Plant Physiol; 2006 Jan; 163(1):98-101. PubMed ID: 16360808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using computer vision, image analysis and UAVs for the automatic recognition and counting of common cranes (Grus grus).
    Chen A; Jacob M; Shoshani G; Charter M
    J Environ Manage; 2023 Feb; 328():116948. PubMed ID: 36516707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaf traits in relation to crown development, light interception and growth of elite families of loblolly and slash pine.
    Chmura DJ; Tjoelker MG
    Tree Physiol; 2008 May; 28(5):729-42. PubMed ID: 18316305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring post-fire neighborhood competition effects on pine saplings under different environmental conditions by means of UAV multispectral data and structure-from-motion photogrammetry.
    Fernández-Guisuraga JM; Calvo L; Suárez-Seoane S
    J Environ Manage; 2022 Mar; 305():114373. PubMed ID: 34954682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating within-crown variation in net photosynthesis in loblolly and slash pine families.
    McGarvey RC; Martin TA; White TL
    Tree Physiol; 2004 Nov; 24(11):1209-20. PubMed ID: 15339730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying pine processionary moth defoliation in a pine-oak mixed forest using unmanned aerial systems and multispectral imagery.
    Cardil A; Otsu K; Pla M; Silva CA; Brotons L
    PLoS One; 2019; 14(3):e0213027. PubMed ID: 30889176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Detection of Wheat Ears in Orthophotos From Unmanned Aerial Vehicles in Fields Based on YOLOX.
    Zhaosheng Y; Tao L; Tianle Y; Chengxin J; Chengming S
    Front Plant Sci; 2022; 13():851245. PubMed ID: 35574098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple shoot production from seedling explants of slash pine (Pinus elliottii, Engelm.).
    Burns JA; Schwarz OJ; Schlarbaum SE
    Plant Cell Rep; 1991 Nov; 10(9):439-43. PubMed ID: 24221847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. YOLOX target detection model can identify and classify several types of tea buds with similar characteristics.
    Yang M; Yuan W; Xu G
    Sci Rep; 2024 Feb; 14(1):2855. PubMed ID: 38310143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapeseed Seedling Stand Counting and Seeding Performance Evaluation at Two Early Growth Stages Based on Unmanned Aerial Vehicle Imagery.
    Zhao B; Zhang J; Yang C; Zhou G; Ding Y; Shi Y; Zhang D; Xie J; Liao Q
    Front Plant Sci; 2018; 9():1362. PubMed ID: 30298081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.