These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 38235193)
1. Research on a UAV spray system combined with grid atomized droplets. Xue X; Tian Y; Yang Z; Li Z; Lyu S; Song S; Sun D Front Plant Sci; 2023; 14():1286332. PubMed ID: 38235193 [TBL] [Abstract][Full Text] [Related]
2. Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Li L; Hu Z; Liu Q; Yi T; Han P; Zhang R; Pan L Front Plant Sci; 2022; 13():981494. PubMed ID: 36247584 [TBL] [Abstract][Full Text] [Related]
3. UAV spraying on citrus crop: impact of tank-mix adjuvant on the contact angle and droplet distribution. Meng Y; Zhong W; Liu C; Su J; Su J; Lan Y; Wang Z; Wang M PeerJ; 2022; 10():e13064. PubMed ID: 35295557 [TBL] [Abstract][Full Text] [Related]
4. WSN-Assisted UAV Trajectory Adjustment for Pesticide Drift Control. Hu J; Wang T; Yang J; Lan Y; Lv S; Zhang Y Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32987849 [TBL] [Abstract][Full Text] [Related]
5. Risk assessment of environmental and bystander exposure from agricultural unmanned aerial vehicle sprayers in golden coconut plantations: Effects of droplet size and spray volume. Lan X; Wang J; Chen P; Liang Q; Zhang L; Ma C Ecotoxicol Environ Saf; 2024 Sep; 282():116675. PubMed ID: 38971099 [TBL] [Abstract][Full Text] [Related]
6. Determination of the effective swath of a plant protection UAV adapted to mist nozzles in mountain Nangguo pear orchards. Liu Y; Yao W; Guo S; Yan H; Yu Z; Meng S; Chen D; Chen C Front Plant Sci; 2024; 15():1336580. PubMed ID: 38974984 [TBL] [Abstract][Full Text] [Related]
7. Droplet Deposition Distribution Prediction Method for a Six-Rotor Plant Protection UAV Based on Inverse Distance Weighting. Wang B; Zhang Y; Wang C; Teng G Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236524 [TBL] [Abstract][Full Text] [Related]
8. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Wang C; Herbst A; Zeng A; Wongsuk S; Qiao B; Qi P; Bonds J; Overbeck V; Yang Y; Gao W; He X Sci Total Environ; 2021 Jul; 777():146181. PubMed ID: 33689892 [TBL] [Abstract][Full Text] [Related]
9. Spray performance and control efficacy against pests in paddy rice by UAV-based pesticide application: effects of atomization, UAV configuration and flight velocity. Wongsuk S; Qi P; Wang C; Zeng A; Sun F; Yu F; Zhao X; Xiongkui H Pest Manag Sci; 2024 Apr; 80(4):2072-2084. PubMed ID: 38129096 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Droplet Size, Coverage, and Drift Potential from UAV Application Methods and Ground Application Methods on Row Crops. Gibbs J; Peters TM; Heck LP Trans ASABE; 2021; 64(3):819-828. PubMed ID: 37667776 [TBL] [Abstract][Full Text] [Related]
11. Droplet distribution in cotton canopy using single-rotor and four-rotor unmanned aerial vehicles. Meng Y; Ma Y; Wang Z; Hu H PeerJ; 2022; 10():e13572. PubMed ID: 35722263 [TBL] [Abstract][Full Text] [Related]
12. Spray performance evaluation of a six-rotor unmanned aerial vehicle sprayer for pesticide application using an orchard operation mode in apple orchards. Wang C; Liu Y; Zhang Z; Han L; Li Y; Zhang H; Wongsuk S; Li Y; Wu X; He X Pest Manag Sci; 2022 Jun; 78(6):2449-2466. PubMed ID: 35306733 [TBL] [Abstract][Full Text] [Related]
13. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Wang G; Han Y; Li X; Andaloro J; Chen P; Hoffmann WC; Han X; Chen S; Lan Y Sci Total Environ; 2020 Oct; 737():139793. PubMed ID: 32526578 [TBL] [Abstract][Full Text] [Related]
14. Control Efficacy of UAV-Based Ultra-Low-Volume Application of Pesticide in Chestnut Orchards. Arakawa T; Kamio S Plants (Basel); 2023 Jul; 12(14):. PubMed ID: 37514212 [TBL] [Abstract][Full Text] [Related]
15. Distribution characteristics on droplet deposition of wind field vortex formed by multi-rotor UAV. Guo S; Li J; Yao W; Zhan Y; Li Y; Shi Y PLoS One; 2019; 14(7):e0220024. PubMed ID: 31329644 [TBL] [Abstract][Full Text] [Related]
16. Evaluating the use of unmanned aerial vehicles for spray applications in mountain Nanguo pear orchards. Guo S; Chen C; Du G; Yu F; Yao W; Lan Y Pest Manag Sci; 2024 Jul; 80(7):3590-3602. PubMed ID: 38451056 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of aerial spraying application of multi-rotor unmanned aerial vehicle for Wang J; Ma C; Chen P; Yao W; Yan Y; Zeng T; Chen S; Lan Y Front Plant Sci; 2023; 14():1093912. PubMed ID: 36925752 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of unmanned aerial vehicle for effective spraying application in coconut plantations. Pandiselvam R; Daliyamol ; Imran S S; Hegde V; Sujithra M; Prathibha PS; Prathibha VH; Hebbar KB Heliyon; 2024 Oct; 10(19):e38569. PubMed ID: 39397987 [TBL] [Abstract][Full Text] [Related]
19. Comparison of UAV and fixed-wing aerial application for alfalfa insect pest control: evaluating efficacy, residues, and spray quality. Li X; Giles DK; Andaloro JT; Long R; Lang EB; Watson LJ; Qandah I Pest Manag Sci; 2021 Nov; 77(11):4980-4992. PubMed ID: 34216079 [TBL] [Abstract][Full Text] [Related]
20. Design of Plant Protection UAV Variable Spray System Based on Neural Networks. Wen S; Zhang Q; Yin X; Lan Y; Zhang J; Ge Y Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30841563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]