These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38235223)

  • 1. Hybrid Systems to Boost EEG-Based Real-Time Action Decoding in Car Driving Scenarios.
    Vecchiato G
    Front Neuroergon; 2021; 2():784827. PubMed ID: 38235223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG-EMG coupling as a hybrid method for steering detection in car driving settings.
    Vecchiato G; Del Vecchio M; Ambeck-Madsen J; Ascari L; Avanzini P
    Cogn Neurodyn; 2022 Oct; 16(5):987-1002. PubMed ID: 36237409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust anticipation of continuous steering actions from electroencephalographic data during simulated driving.
    Di Liberto GM; Barsotti M; Vecchiato G; Ambeck-Madsen J; Del Vecchio M; Avanzini P; Ascari L
    Sci Rep; 2021 Dec; 11(1):23383. PubMed ID: 34862442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG-based decoding of error-related brain activity in a real-world driving task.
    Zhang H; Chavarriaga R; Khaliliardali Z; Gheorghe L; Iturrate I; Millán Jd
    J Neural Eng; 2015 Dec; 12(6):066028. PubMed ID: 26595103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Human-Machine Interface for Gait Decoding Through Bayesian Fusion of EEG and EMG Classifiers.
    Tortora S; Tonin L; Chisari C; Micera S; Menegatti E; Artoni F
    Front Neurorobot; 2020; 14():582728. PubMed ID: 33281593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hybrid FPGA-Based System for EEG- and EMG-Based Online Movement Prediction.
    Wöhrle H; Tabie M; Kim SK; Kirchner F; Kirchner EA
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28671632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiology-based detection of emergency braking intention in real-world driving.
    Haufe S; Kim JW; Kim IH; Sonnleitner A; Schrauf M; Curio G; Blankertz B
    J Neural Eng; 2014 Oct; 11(5):056011. PubMed ID: 25111850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG-based emergency braking intention detection during simulated driving.
    Liang X; Yu Y; Liu Y; Liu K; Liu Y; Zhou Z
    Biomed Eng Online; 2023 Jul; 22(1):65. PubMed ID: 37393355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG-Based Mental Workload Neurometric to Evaluate the Impact of Different Traffic and Road Conditions in Real Driving Settings.
    Di Flumeri G; Borghini G; Aricò P; Sciaraffa N; Lanzi P; Pozzi S; Vignali V; Lantieri C; Bichicchi A; Simone A; Babiloni F
    Front Hum Neurosci; 2018; 12():509. PubMed ID: 30618686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG potentials predict upcoming emergency brakings during simulated driving.
    Haufe S; Treder MS; Gugler MF; Sagebaum M; Curio G; Blankertz B
    J Neural Eng; 2011 Oct; 8(5):056001. PubMed ID: 21799241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data.
    Ali O; Saif-Ur-Rehman M; Glasmachers T; Iossifidis I; Klaes C
    Comput Biol Med; 2024 Jan; 168():107649. PubMed ID: 37980798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimodal EEG-fNIRS in Neuroergonomics. Current Evidence and Prospects for Future Research.
    Bourguignon NJ; Bue SL; Guerrero-Mosquera C; Borragán G
    Front Neuroergon; 2022; 3():934234. PubMed ID: 38235461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eye movements in real and simulated driving and navigation control - Foreword to the Special Issue.
    Groner R; Kasneci E
    J Eye Mov Res; 2021 Jun; 12(3):. PubMed ID: 34122742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Closed-loop EEG study on visual recognition during driving.
    Aydarkhanov R; Ušćumlić M; Chavarriaga R; Gheorghe L; Del R Millán J
    J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33494072
    [No Abstract]   [Full Text] [Related]  

  • 16. Investigating neural correlates of locomotion transition via temporal relation of EEG and EOG-recorded eye movements.
    Mehra D; Tiwari A; Joshi D
    Comput Biol Med; 2021 May; 132():104350. PubMed ID: 33799217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Dimensional Subject Representation-Based Transfer Learning in EEG Decoding.
    Jeng PY; Wei CS; Jung TP; Wang LC
    IEEE J Biomed Health Inform; 2021 Jun; 25(6):1915-1925. PubMed ID: 32960770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Tracking of Selective Auditory Attention From M/EEG: A Bayesian Filtering Approach.
    Miran S; Akram S; Sheikhattar A; Simon JZ; Zhang T; Babadi B
    Front Neurosci; 2018; 12():262. PubMed ID: 29765298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Online removal of muscle artifact from electroencephalogram signals based on canonical correlation analysis.
    Gao J; Zheng C; Wang P
    Clin EEG Neurosci; 2010 Jan; 41(1):53-9. PubMed ID: 20307017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding the attended speech stream with multi-channel EEG: implications for online, daily-life applications.
    Mirkovic B; Debener S; Jaeger M; De Vos M
    J Neural Eng; 2015 Aug; 12(4):046007. PubMed ID: 26035345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.