These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 38235237)

  • 1. A Methodological Framework to Capture Neuromuscular Fatigue Mechanisms Under Stress.
    Tyagi O; Mehta RK
    Front Neuroergon; 2021; 2():779069. PubMed ID: 38235237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of cognitive fatigue on prefrontal cortex correlates of neuromuscular fatigue in older women.
    Shortz AE; Pickens A; Zheng Q; Mehta RK
    J Neuroeng Rehabil; 2015 Dec; 12():115. PubMed ID: 26689713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural bases of motor fatigue in multiple sclerosis: A multimodal approach using neuromuscular assessment and TMS-EEG.
    Leodori G; Mancuso M; Maccarrone D; Tartaglia M; Ianniello A; Certo F; Baione V; Ferrazzano G; Malimpensa L; Belvisi D; Pozzilli C; Berardelli A; Conte A
    Neurobiol Dis; 2023 May; 180():106073. PubMed ID: 36906073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of neuromuscular fatigue and recovery in unilateral versus bilateral maximal voluntary contractions.
    Koral J; Oranchuk DJ; Wrightson JG; Twomey R; Millet GY
    J Appl Physiol (1985); 2020 Apr; 128(4):785-794. PubMed ID: 32163332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromuscular Fatigue during Prolonged Exercise in Hypoxia.
    Jubeau M; Rupp T; Temesi J; Perrey S; Wuyam B; Millet GY; Verges S
    Med Sci Sports Exerc; 2017 Mar; 49(3):430-439. PubMed ID: 27753741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supraspinal fatigue in human inspiratory muscles with repeated sustained maximal efforts.
    Luu BL; Saboisky JP; Taylor JL; Gorman RB; Gandevia SC; Butler JE
    J Appl Physiol (1985); 2020 Dec; 129(6):1365-1372. PubMed ID: 33002378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sleep deprivation on perceived and performance fatigability in females: An exploratory study.
    Magnuson JR; Kang HJ; Debenham MIB; McNeil CJ; Dalton BH
    Eur J Sport Sci; 2023 Sep; 23(9):1922-1931. PubMed ID: 35989687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central fatigue assessed by transcranial magnetic stimulation in ultratrail running.
    Temesi J; Rupp T; Martin V; Arnal PJ; Féasson L; Verges S; Millet GY
    Med Sci Sports Exerc; 2014 Jun; 46(6):1166-75. PubMed ID: 24195865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Severe acute hypoxia impairs recovery of voluntary muscle activation after sustained submaximal elbow flexion.
    McKeown DJ; McNeil CJ; Brotherton EJ; Simmonds MJ; Kavanagh JJ
    J Physiol; 2021 Dec; 599(24):5379-5395. PubMed ID: 34761807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced serotonin availability amplifies fatigue perception and modulates the TMS-induced silent period during sustained low-intensity elbow flexions.
    Thorstensen JR; Taylor JL; Tucker MG; Kavanagh JJ
    J Physiol; 2020 Jul; 598(13):2685-2701. PubMed ID: 32243582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of graded hypoxia on supraspinal contributions to fatigue with unilateral knee-extensor contractions.
    Goodall S; Ross EZ; Romer LM
    J Appl Physiol (1985); 2010 Dec; 109(6):1842-51. PubMed ID: 20813979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a supraspinal contribution to human muscle fatigue.
    Taylor JL; Todd G; Gandevia SC
    Clin Exp Pharmacol Physiol; 2006 Apr; 33(4):400-5. PubMed ID: 16620309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. People with multiple sclerosis have reduced TMS-evoked motor cortical output compared with healthy individuals during fatiguing submaximal contractions.
    Brotherton EJ; Sabapathy S; Mckeown DJ; Kavanagh JJ
    J Neurophysiol; 2022 Jul; 128(1):105-117. PubMed ID: 35675447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcranial magnetic stimulation and human muscle fatigue.
    Taylor JL; Gandevia SC
    Muscle Nerve; 2001 Jan; 24(1):18-29. PubMed ID: 11150962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced availability of serotonin limits muscle activation during high-intensity, but not low-intensity, fatiguing contractions.
    Henderson TT; Taylor JL; Thorstensen JR; Tucker MG; Kavanagh JJ
    J Neurophysiol; 2022 Oct; 128(4):751-762. PubMed ID: 36001790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between perceptions of fatigue, effort, and affect decrease knee extensor endurance performance following upper body motor activity, independent of changes in neuromuscular function.
    Greenhouse-Tucknott A; Wrightson JG; Raynsford M; Harrison NA; Dekerle J
    Psychophysiology; 2020 Sep; 57(9):e13602. PubMed ID: 32578885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal and supraspinal factors in human muscle fatigue.
    Gandevia SC
    Physiol Rev; 2001 Oct; 81(4):1725-89. PubMed ID: 11581501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supraspinal fatigue is similar in men and women for a low-force fatiguing contraction.
    Keller ML; Pruse J; Yoon T; Schlinder-Delap B; Harkins A; Hunter SK
    Med Sci Sports Exerc; 2011 Oct; 43(10):1873-83. PubMed ID: 21364478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-intensity exhaustive exercise reduces long-interval intracortical inhibition.
    O'Leary TJ; Collett J; Morris MG
    Exp Brain Res; 2018 Dec; 236(12):3149-3158. PubMed ID: 30159591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.