BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38235361)

  • 1. Conformational plasticity of SpyCas9 induced by AcrIIA4 and AcrIIA2: Insights from molecular dynamics simulation.
    Wen S; Zhao Y; Qi X; Cai M; Huang K; Liu H; Kong DX
    Comput Struct Biotechnol J; 2024 Dec; 23():537-548. PubMed ID: 38235361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein.
    Dong D; Guo M; Wang S; Zhu Y; Wang S; Xiong Z; Yang J; Xu Z; Huang Z
    Nature; 2017 Jun; 546(7658):436-439. PubMed ID: 28448066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phage AcrIIA2 DNA Mimicry: Structural Basis of the CRISPR and Anti-CRISPR Arms Race.
    Liu L; Yin M; Wang M; Wang Y
    Mol Cell; 2019 Feb; 73(3):611-620.e3. PubMed ID: 30606466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure and dynamics of anti-CRISPR AcrIIA4, the Cas9 inhibitor.
    Kim I; Jeong M; Ka D; Han M; Kim NK; Bae E; Suh JY
    Sci Rep; 2018 Mar; 8(1):3883. PubMed ID: 29497118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
    Yang H; Patel DJ
    Mol Cell; 2017 Jul; 67(1):117-127.e5. PubMed ID: 28602637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition mechanisms of CRISPR-Cas9 by AcrIIA25.1 and AcrIIA32.
    Zheng J; Zhu Y; Huang T; Gao W; He J; Huang Z
    Sci China Life Sci; 2024 Jun; ():. PubMed ID: 38842649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex.
    Zeng Y; Cui Y; Zhang Y; Zhang Y; Liang M; Chen H; Lan J; Song G; Lou J
    Nucleic Acids Res; 2018 Jan; 46(1):350-361. PubMed ID: 29145633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae.
    Basgall EM; Goetting SC; Goeckel ME; Giersch RM; Roggenkamp E; Schrock MN; Halloran M; Finnigan GC
    Microbiology (Reading); 2018 Apr; 164(4):464-474. PubMed ID: 29488867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional insights into the
    Zuo Z; Zolekar A; Babu K; Lin VJ; Hayatshahi HS; Rajan R; Wang YC; Liu J
    Elife; 2019 Jul; 8():. PubMed ID: 31361218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cell cycle-dependent CRISPR-Cas9 activation system based on an anti-CRISPR protein shows improved genome editing accuracy.
    Matsumoto D; Tamamura H; Nomura W
    Commun Biol; 2020 Oct; 3(1):601. PubMed ID: 33097793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disabling Cas9 by an anti-CRISPR DNA mimic.
    Shin J; Jiang F; Liu JJ; Bray NL; Rauch BJ; Baik SH; Nogales E; Bondy-Denomy J; Corn JE; Doudna JA
    Sci Adv; 2017 Jul; 3(7):e1701620. PubMed ID: 28706995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A positive, growth-based PAM screen identifies noncanonical motifs recognized by the
    Collias D; Leenay RT; Slotkowski RA; Zuo Z; Collins SP; McGirr BA; Liu J; Beisel CL
    Sci Adv; 2020 Jul; 6(29):eabb4054. PubMed ID: 32832642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-Responsive Competitive Inhibition of CRISPR-Cas9.
    Jiang F; Liu JJ; Osuna BA; Xu M; Berry JD; Rauch BJ; Nogales E; Bondy-Denomy J; Doudna JA
    Mol Cell; 2019 Feb; 73(3):601-610.e5. PubMed ID: 30595438
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Yourik P; Fuchs RT; Mabuchi M; Curcuru JL; Robb GB
    RNA; 2019 Jan; 25(1):35-44. PubMed ID: 30348755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of anti-CRISPR protein AcrIIA4 as a capture ligand for CRISPR/Cas9 detection.
    Johnston RK; Seamon KJ; Saada EA; Podlevsky JD; Branda SS; Timlin JA; Harper JC
    Biosens Bioelectron; 2019 Sep; 141():111361. PubMed ID: 31207570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cas9-Geminin and Cdt1-fused anti-CRISPR protein synergistically increase editing accuracy.
    Matsumoto D; Kishi K; Matsugi E; Inoue Y; Nigorikawa K; Nomura W
    FEBS Lett; 2023 Apr; 597(7):985-994. PubMed ID: 36905332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleic Acid-Dependent Conformational Changes in CRISPR-Cas9 Revealed by Site-Directed Spin Labeling.
    Vazquez Reyes C; Tangprasertchai NS; Yogesha SD; Nguyen RH; Zhang X; Rajan R; Qin PZ
    Cell Biochem Biophys; 2017 Jun; 75(2):203-210. PubMed ID: 27342128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aptamer inhibitor selection of SpyCas9 through CE-SELEX.
    Yang G; Wang H; Jiang G; Zhao L; Qu F
    Talanta; 2024 Jun; 273():125837. PubMed ID: 38479030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cas9 degradation in human cells using phage anti-CRISPR proteins.
    Meacham Z; de Tacca LA; Bondy-Denomy J; Rabuka D; Schelle M
    PLoS Biol; 2023 Dec; 21(12):e3002431. PubMed ID: 38064533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protospacer Adjacent Motif-Induced Allostery Activates CRISPR-Cas9.
    Palermo G; Ricci CG; Fernando A; Basak R; Jinek M; Rivalta I; Batista VS; McCammon JA
    J Am Chem Soc; 2017 Nov; 139(45):16028-16031. PubMed ID: 28764328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.