BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38235361)

  • 41. Guide RNAs: A Glimpse at the Sequences that Drive CRISPR-Cas Systems.
    Briner AE; Barrangou R
    Cold Spring Harb Protoc; 2016 Jul; 2016(7):. PubMed ID: 27371605
    [TBL] [Abstract][Full Text] [Related]  

  • 42. AcrIIA5 Inhibits a Broad Range of Cas9 Orthologs by Preventing DNA Target Cleavage.
    Song G; Zhang F; Zhang X; Gao X; Zhu X; Fan D; Tian Y
    Cell Rep; 2019 Nov; 29(9):2579-2589.e4. PubMed ID: 31775029
    [TBL] [Abstract][Full Text] [Related]  

  • 43. All-in-one adeno-associated virus delivery and genome editing by Neisseria meningitidis Cas9 in vivo.
    Ibraheim R; Song CQ; Mir A; Amrani N; Xue W; Sontheimer EJ
    Genome Biol; 2018 Sep; 19(1):137. PubMed ID: 30231914
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Distinct Subcellular Localization of a Type I CRISPR Complex and the Cas3 Nuclease in Bacteria.
    Govindarajan S; Borges A; Karambelkar S; Bondy-Denomy J
    J Bacteriol; 2022 May; 204(5):e0010522. PubMed ID: 35389256
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9.
    Dagdas YS; Chen JS; Sternberg SH; Doudna JA; Yildiz A
    Sci Adv; 2017 Aug; 3(8):eaao0027. PubMed ID: 28808686
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Increasing the Activity of the High-Fidelity SpyCas9 Form in Yeast by Directed Mutagenesis of the PAM-Interacting Domain.
    Davletshin AI; Matveeva AA; Bachurin SS; Karpov DS; Garbuz DG
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203615
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Probing the Dynamics of
    Zhdanova PV; Chernonosov AA; Prokhorova DV; Stepanov GA; Kanazhevskaya LY; Koval VV
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163047
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer.
    Mahendra C; Christie KA; Osuna BA; Pinilla-Redondo R; Kleinstiver BP; Bondy-Denomy J
    Nat Microbiol; 2020 Apr; 5(4):620-629. PubMed ID: 32218510
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced Bacterial Immunity and Mammalian Genome Editing via RNA-Polymerase-Mediated Dislodging of Cas9 from Double-Strand DNA Breaks.
    Clarke R; Heler R; MacDougall MS; Yeo NC; Chavez A; Regan M; Hanakahi L; Church GM; Marraffini LA; Merrill BJ
    Mol Cell; 2018 Jul; 71(1):42-55.e8. PubMed ID: 29979968
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Valproic Acid Thermally Destabilizes and Inhibits SpyCas9 Activity.
    Cheng X
    Mol Ther; 2020 Dec; 28(12):2635-2641. PubMed ID: 32882179
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure and Dynamics of the CRISPR-Cas9 Catalytic Complex.
    Palermo G
    J Chem Inf Model; 2019 May; 59(5):2394-2406. PubMed ID: 30763088
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamics changes of CRISPR-Cas9 systems induced by high fidelity mutations.
    Zheng L; Shi J; Mu Y
    Phys Chem Chem Phys; 2018 Nov; 20(43):27439-27448. PubMed ID: 30357163
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q
    PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Key role of the REC lobe during CRISPR-Cas9 activation by 'sensing', 'regulating', and 'locking' the catalytic HNH domain.
    Palermo G; Chen JS; Ricci CG; Rivalta I; Jinek M; Batista VS; Doudna JA; McCammon JA
    Q Rev Biophys; 2018; 51():. PubMed ID: 30555184
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CRISPR-Cas9 Structures and Mechanisms.
    Jiang F; Doudna JA
    Annu Rev Biophys; 2017 May; 46():505-529. PubMed ID: 28375731
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inhibition mechanisms of CRISPR-Cas9 by AcrIIA17 and AcrIIA18.
    Wang X; Li X; Ma Y; He J; Liu X; Yu G; Yin H; Zhang H
    Nucleic Acids Res; 2022 Jan; 50(1):512-521. PubMed ID: 34893860
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes.
    Ma E; Harrington LB; O'Connell MR; Zhou K; Doudna JA
    Mol Cell; 2015 Nov; 60(3):398-407. PubMed ID: 26545076
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of a Type II-A CRISPR-Cas System in
    Mosterd C; Moineau S
    mSphere; 2020 Jun; 5(3):. PubMed ID: 32581075
    [No Abstract]   [Full Text] [Related]  

  • 60. Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences.
    Mekler V; Kuznedelov K; Severinov K
    J Biol Chem; 2020 May; 295(19):6509-6517. PubMed ID: 32241913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.