These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38235368)

  • 1. PharmaPy: An object-oriented tool for the development of hybrid pharmaceutical flowsheets.
    Casas-Orozco D; Laky D; Wang V; Abdi M; Feng X; Wood E; Laird C; Reklaitis GV; Nagy ZK
    Comput Chem Eng; 2021 Oct; 153():. PubMed ID: 38235368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of PharmaPy in the digital design of the manufacturing process of an active pharmaceutical ingredient.
    Casas-Orozco D; Laky D; Reklaitis GV; Laird C; Wang V; Abdi M; Feng X; Wood E; Nagy ZK
    ESCAPE; 2021; 50():333-339. PubMed ID: 38170084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using PharmaPy with Jupyter Notebook to teach digital design in pharmaceutical manufacturing.
    Laky DJ; Casas-Orozco D; Abdi M; Feng X; Wood E; Reklaitis GV; Nagy ZK
    Comput Appl Eng Educ; 2023 Nov; 31(6):1662-1677. PubMed ID: 38314247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation-optimization framework for the digital design of pharmaceutical processes using Pyomo and PharmaPy.
    Laky D; Casas-Orozco D; Laird CD; Reklaitis GV; Nagy ZK
    Ind Eng Chem Res; 2022; 61(43):16128-16140. PubMed ID: 38179037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Techno-economic analysis of dynamic, end-to-end optimal pharmaceutical campaign manufacturing using PharmaPy.
    Casas-Orozco D; Laky D; Wang V; Abdi M; Feng X; Wood E; Reklaitis GV; Nagy ZK
    AIChE J; 2023; 69(9):. PubMed ID: 38179085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital design of an integrated purification system for continuous pharmaceutical manufacturing.
    Hur I; Casas-Orozco D; Laky D; Destro F; Nagy ZK
    Chem Eng Sci; 2024 Mar; 285():. PubMed ID: 38975615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital twin of a continuous direct compression line for drug product and process design using a hybrid flowsheet modelling approach.
    Moreno-Benito M; Lee KT; Kaydanov D; Verrier HM; Blackwood DO; Doshi P
    Int J Pharm; 2022 Nov; 628():122336. PubMed ID: 36309292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction kinetics determination and uncertainty analysis for the synthesis of the cancer drug lomustine.
    Casas-Orozco D; Laky D; Mackey J; Reklaitis G; Nagy Z
    Chem Eng Sci; 2023; 275():. PubMed ID: 38179266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. System-wide hybrid MPC-PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction.
    Singh R; Ierapetritou M; Ramachandran R
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1164-82. PubMed ID: 23523542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of key energy and performance metrics for drug product manufacturing.
    Chen Y; Kotamarthy L; Dan A; Sampat C; Bhalode P; Singh R; Glasser BJ; Ramachandran R; Ierapetritou M
    Int J Pharm; 2023 Jan; 631():122487. PubMed ID: 36521636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an RTD-Based Flowsheet Modeling Framework for the Assessment of In-Process Control Strategies.
    Tian G; Koolivand A; Gu Z; Orella M; Shaw R; O'Connor TF
    AAPS PharmSciTech; 2021 Jan; 22(1):25. PubMed ID: 33400033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-scale flowsheet simulation of an integrated continuous purification-downstream pharmaceutical manufacturing process.
    Sen M; Chaudhury A; Singh R; John J; Ramachandran R
    Int J Pharm; 2013 Mar; 445(1-2):29-38. PubMed ID: 23380627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design Space Identification and Visualization for Continuous Pharmaceutical Manufacturing.
    Diab S; Gerogiorgis DI
    Pharmaceutics; 2020 Mar; 12(3):. PubMed ID: 32151096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using artificial neural networks to accelerate flowsheet optimization for downstream process development.
    Keulen D; Hagen EV; Geldhof G; Le Bussy O; Pabst M; Ottens M
    Biotechnol Bioeng; 2024 Aug; 121(8):2318-2331. PubMed ID: 37256724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using residence time distribution in pharmaceutical solid dose manufacturing - A critical review.
    Bhalode P; Tian H; Gupta S; Razavi SM; Roman-Ospino A; Talebian S; Singh R; Scicolone JV; Muzzio FJ; Ierapetritou M
    Int J Pharm; 2021 Dec; 610():121248. PubMed ID: 34748808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pyFOOMB: Python framework for object oriented modeling of bioprocesses.
    Hemmerich J; Tenhaef N; Wiechert W; Noack S
    Eng Life Sci; 2021 Mar; 21(3-4):242-257. PubMed ID: 33716622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NEXTorch: A Design and Bayesian Optimization Toolkit for Chemical Sciences and Engineering.
    Wang Y; Chen TY; Vlachos DG
    J Chem Inf Model; 2021 Nov; 61(11):5312-5319. PubMed ID: 34694805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Throughput Optimization of Continuous Biopharmaceutical Manufacturing Facilities.
    Garcia FA; Vandiver MW
    PDA J Pharm Sci Technol; 2017; 71(3):189-205. PubMed ID: 27974629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic Optimization of the Computation Graph in the Nengo Neural Network Simulator.
    Gosmann J; Eliasmith C
    Front Neuroinform; 2017; 11():33. PubMed ID: 28522970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methodology for fast development of digital solutions in integrated continuous downstream processing.
    Andersson N; Fons JG; Isaksson M; Tallvod S; Espinoza D; Sjökvist L; Andersson GZ; Nilsson B
    Biotechnol Bioeng; 2024 Aug; 121(8):2378-2387. PubMed ID: 37458361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.