These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 38235447)

  • 1. Misleading Robot Signals in a Classification Task Induce Cognitive Load as Measured by Theta Synchronization Between Frontal and Temporo-parietal Brain Regions.
    Abubshait A; Parenti L; Perez-Osorio J; Wykowska A
    Front Neuroergon; 2022; 3():838136. PubMed ID: 38235447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Irrelevant Robot Signals in a Categorization Task Induce Cognitive Conflict in Performance, Eye Trajectories, the N2 Component of the EEG Signal, and Frontal Theta Oscillations.
    Perez-Osorio J; Abubshait A; Wykowska A
    J Cogn Neurosci; 2021 Dec; 34(1):108-126. PubMed ID: 34705044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robot Faces that Follow Gaze Facilitate Attentional Engagement and Increase Their Likeability.
    Willemse C; Marchesi S; Wykowska A
    Front Psychol; 2018; 9():70. PubMed ID: 29459842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural basis of social attention: common and distinct mechanisms for social and nonsocial orienting stimuli.
    Narganes-Pineda C; Paz-Alonso PM; Marotta A; Lupiáñez J; Chica AB
    Cereb Cortex; 2023 Nov; 33(22):11010-11024. PubMed ID: 37782936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Context Modulates Congruency Effects in Selective Attention to Social Cues.
    Ravagli A; Marini F; Marino BFM; Ricciardelli P
    Front Psychol; 2018; 9():940. PubMed ID: 29946281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain stimulation to left prefrontal cortex modulates attentional orienting to gaze cues.
    Wiese E; Abubshait A; Azarian B; Blumberg EJ
    Philos Trans R Soc Lond B Biol Sci; 2019 Apr; 374(1771):20180430. PubMed ID: 30852996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG brain oscillations are modulated by interoception in response to a synchronized motor vs. cognitive task.
    Angioletti L; Balconi M
    Front Neuroanat; 2022; 16():991522. PubMed ID: 36213612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical Oscillatory Mechanisms Supporting the Control of Human Social-Emotional Actions.
    Bramson B; Jensen O; Toni I; Roelofs K
    J Neurosci; 2018 Jun; 38(25):5739-5749. PubMed ID: 29793973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal interplay between cognitive conflict and attentional markers in social collaboration.
    Abubshait A; Perez-Osorio J; De Tommaso D; Wykowska A
    Psychophysiology; 2024 Aug; 61(8):e14587. PubMed ID: 38600626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in Social Expectations About Robot Signals and Human Signals.
    Parenti L; Belkaid M; Wykowska A
    Cogn Sci; 2023 Dec; 47(12):e13393. PubMed ID: 38133602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor Interference, But Not Sensory Interference, Increases Midfrontal Theta Activity and Brain Synchronization during Reactive Control.
    Kaiser J; Schütz-Bosbach S
    J Neurosci; 2021 Feb; 41(8):1788-1801. PubMed ID: 33441433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional localization and effective connectivity of cortical theta and alpha oscillatory activity during an attention task.
    Kitaura Y; Nishida K; Yoshimura M; Mii H; Katsura K; Ueda S; Ikeda S; Pascual-Marqui RD; Ishii R; Kinoshita T
    Clin Neurophysiol Pract; 2017; 2():193-200. PubMed ID: 30214995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Theta-Band Coherence Between Midfrontal and Posterior Parietal Areas Reflects Post-feedback Adjustments in the State of Outcome Uncertainty.
    Nurislamova YM; Novikov NA; Zhozhikashvili NA; Chernyshev BV
    Front Integr Neurosci; 2019; 13():14. PubMed ID: 31105535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking dynamic adjustments to decision making and performance monitoring processes in conflict tasks.
    Feuerriegel D; Jiwa M; Turner WF; Andrejević M; Hester R; Bode S
    Neuroimage; 2021 Sep; 238():118265. PubMed ID: 34146710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of cognitive conflict during unexpected robot behavior under different mental workload conditions in a physical human-robot collaboration.
    John AR; Singh AK; Gramann K; Liu D; Lin CT
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38295415
    [No Abstract]   [Full Text] [Related]  

  • 17. Developmental changes of BOLD signal correlations with global human EEG power and synchronization during working memory.
    Michels L; Lüchinger R; Koenig T; Martin E; Brandeis D
    PLoS One; 2012; 7(7):e39447. PubMed ID: 22792176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neural mechanism of cognitive control for resolving conflict between abstract task rules.
    Sheu YS; Courtney SM
    Cortex; 2016 Dec; 85():13-24. PubMed ID: 27771559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adolescent cognitive control, theta oscillations, and social observation.
    Buzzell GA; Barker TV; Troller-Renfree SV; Bernat EM; Bowers ME; Morales S; Bowman LC; Henderson HA; Pine DS; Fox NA
    Neuroimage; 2019 Sep; 198():13-30. PubMed ID: 31100431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neuronal theta band signature of error monitoring during integration of facial expression cues.
    Dias C; Costa D; Sousa T; Castelhano J; Figueiredo V; Pereira AC; Castelo-Branco M
    PeerJ; 2022; 10():e12627. PubMed ID: 35194525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.