These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38235525)

  • 1. Bayesian LASSO for population stratification correction in rare haplotype association studies.
    Liu Z; Turkmen AS; Lin S
    Stat Appl Genet Mol Biol; 2024 Jan; 23(1):. PubMed ID: 38235525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Population stratification correction using Bayesian shrinkage priors for genetic association studies.
    Liu Z; Turkmen AS; Lin S
    Ann Hum Genet; 2023 Nov; 87(6):302-315. PubMed ID: 37771252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Family-Based Rare Haplotype Association Method for Quantitative Traits.
    Datta AS; Lin S; Biswas S
    Hum Hered; 2018; 83(4):175-195. PubMed ID: 30799419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FamLBL: detecting rare haplotype disease association based on common SNPs using case-parent triads.
    Wang M; Lin S
    Bioinformatics; 2014 Sep; 30(18):2611-8. PubMed ID: 24849576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principal component regression and linear mixed model in association analysis of structured samples: competitors or complements?
    Zhang Y; Pan W
    Genet Epidemiol; 2015 Mar; 39(3):149-55. PubMed ID: 25536929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Logistic Bayesian LASSO for identifying association with rare haplotypes and application to age-related macular degeneration.
    Biswas S; Lin S
    Biometrics; 2012 Jun; 68(2):587-97. PubMed ID: 21955118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting rare haplotypes associated with complex diseases using both population and family data: Combined logistic Bayesian Lasso.
    Zhou X; Wang M; Lin S
    Stat Methods Med Res; 2020 Nov; 29(11):3340-3350. PubMed ID: 32493129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting rare haplotype association with two correlated phenotypes of binary and continuous types.
    Yuan X; Biswas S
    Stat Med; 2021 Apr; 40(8):1877-1900. PubMed ID: 33438281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bivariate logistic Bayesian LASSO for detecting rare haplotype association with two correlated phenotypes.
    Yuan X; Biswas S
    Genet Epidemiol; 2019 Dec; 43(8):996-1017. PubMed ID: 31544985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of logistic Bayesian LASSO for identifying association with rare haplotypes.
    Biswas S; Papachristou C
    BMC Proc; 2014; 8(Suppl 1):S54. PubMed ID: 25519334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A flexible Bayesian framework for modeling haplotype association with disease, allowing for dominance effects of the underlying causative variants.
    Morris AP
    Am J Hum Genet; 2006 Oct; 79(4):679-94. PubMed ID: 16960804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BGWAS: Bayesian variable selection in linear mixed models with nonlocal priors for genome-wide association studies.
    Williams J; Xu S; Ferreira MAR
    BMC Bioinformatics; 2023 May; 24(1):194. PubMed ID: 37170185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RAINBOW: Haplotype-based genome-wide association study using a novel SNP-set method.
    Hamazaki K; Iwata H
    PLoS Comput Biol; 2020 Feb; 16(2):e1007663. PubMed ID: 32059004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies.
    Zhao T; Fernando R; Cheng H
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34499126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting genome structure in association analysis.
    Kim S; Xing EP
    J Comput Biol; 2014 Apr; 21(4):345-60. PubMed ID: 21548809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct analysis of unphased SNP genotype data in population-based association studies via Bayesian partition modelling of haplotypes.
    Morris AP
    Genet Epidemiol; 2005 Sep; 29(2):91-107. PubMed ID: 15940704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Lasso multi-marker mixed model for association mapping with population structure correction.
    Rakitsch B; Lippert C; Stegle O; Borgwardt K
    Bioinformatics; 2013 Jan; 29(2):206-14. PubMed ID: 23175758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing Single-SNP, Multi-SNP, and Haplotype-Based Approaches in Association Studies for Major Traits in Barley.
    Abed A; Belzile F
    Plant Genome; 2019 Nov; 12(3):1-14. PubMed ID: 33016584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bayesian hierarchical model for detecting haplotype-haplotype and haplotype-environment interactions in genetic association studies.
    Li J; Zhang K; Yi N
    Hum Hered; 2011; 71(3):148-60. PubMed ID: 21778734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.