These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38235697)

  • 1. Molecular Insights into the Dynamics of Amyloid Fibril Growth: Elongation and Lateral Assembly of GNNQQNY Protofibrils.
    John T; Rampioni A; Poger D; Mark AE
    ACS Chem Neurosci; 2024 Feb; 15(4):716-723. PubMed ID: 38235697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amyloid formation characteristics of GNNQQNY from yeast prion protein Sup35 and its seeding with heterogeneous polypeptides.
    Haratake M; Takiguchi T; Masuda N; Yoshida S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2017 Jan; 149():72-79. PubMed ID: 27736724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of water in protein aggregation and amyloid polymorphism.
    Thirumalai D; Reddy G; Straub JE
    Acc Chem Res; 2012 Jan; 45(1):83-92. PubMed ID: 21761818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustering and Fibril Formation during GNNQQNY Aggregation: A Molecular Dynamics Study.
    Szała-Mendyk B; Molski A
    Biomolecules; 2020 Sep; 10(10):. PubMed ID: 32987720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural stability and dynamics of an amyloid-forming peptide GNNQQNY from the yeast prion sup-35.
    Zheng J; Ma B; Tsai CJ; Nussinov R
    Biophys J; 2006 Aug; 91(3):824-33. PubMed ID: 16679374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular structures of amyloid and prion fibrils: consensus versus controversy.
    Tycko R; Wickner RB
    Acc Chem Res; 2013 Jul; 46(7):1487-96. PubMed ID: 23294335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleation-dependent Aggregation Kinetics of Yeast Sup35 Fragment GNNQQNY.
    Burra G; Maina MB; Serpell LC; Thakur AK
    J Mol Biol; 2021 Feb; 433(3):166732. PubMed ID: 33279578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A variational model for oligomer-formation process of GNNQQNY peptide from yeast prion protein Sup35.
    Qi X; Hong L; Zhang Y
    Biophys J; 2012 Feb; 102(3):597-605. PubMed ID: 22325283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life cycle of yeast prions: propagation mediated by amyloid fibrils.
    Inoue Y
    Protein Pept Lett; 2009; 16(3):271-6. PubMed ID: 19275740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of oligomer and amyloid fibril formation by yeast prion Sup35 observed by high-speed atomic force microscopy.
    Konno H; Watanabe-Nakayama T; Uchihashi T; Okuda M; Zhu L; Kodera N; Kikuchi Y; Ando T; Taguchi H
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7831-7836. PubMed ID: 32213585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disulfide bond formation significantly accelerates the assembly of Ure2p fibrils because of the proximity of a potential amyloid stretch.
    Fei L; Perrett S
    J Biol Chem; 2009 Apr; 284(17):11134-41. PubMed ID: 19258323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy.
    Langkilde AE; Morris KL; Serpell LC; Svergun DI; Vestergaard B
    Acta Crystallogr D Biol Crystallogr; 2015 Apr; 71(Pt 4):882-95. PubMed ID: 25849399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibrillar oligomers nucleate the oligomerization of monomeric amyloid beta but do not seed fibril formation.
    Wu JW; Breydo L; Isas JM; Lee J; Kuznetsov YG; Langen R; Glabe C
    J Biol Chem; 2010 Feb; 285(9):6071-9. PubMed ID: 20018889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependence of the aggregation kinetics of Sup35 and Ure2p yeast prions.
    Sabaté R; Villar-Piqué A; Espargaró A; Ventura S
    Biomacromolecules; 2012 Feb; 13(2):474-83. PubMed ID: 22176525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Replication of Prion Protein Fragment 89-230 Amyloid Fibrils Accelerated by Prion Protein Fragment 107-143 Aggregates.
    Sneideris T; Ziaunys M; Chu BK; Chen RP; Smirnovas V
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33049945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. β-hairpin-mediated formation of structurally distinct multimers of neurotoxic prion peptides.
    Gill AC
    PLoS One; 2014; 9(1):e87354. PubMed ID: 24498083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prion-like Aggregation of the Heptapeptide GNNQQNY into Amyloid Nanofiber Is Governed by Configuration Entropy.
    Chen Z; Xiao X; Yang L; Lian C; Xu S; Liu H
    J Chem Inf Model; 2023 Oct; 63(20):6423-6435. PubMed ID: 37782627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characterization of GNNQQNY amyloid fibrils by magic angle spinning NMR.
    van der Wel PC; Lewandowski JR; Griffin RG
    Biochemistry; 2010 Nov; 49(44):9457-69. PubMed ID: 20695483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic insights into the size-dependent effects of nanoparticles on inhibiting and accelerating amyloid fibril formation.
    John T; Adler J; Elsner C; Petzold J; Krueger M; Martin LL; Huster D; Risselada HJ; Abel B
    J Colloid Interface Sci; 2022 Sep; 622():804-818. PubMed ID: 35569410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational studies of protein aggregation mediated by amyloid: Fibril elongation and secondary nucleation.
    Cao Y; Tang X; Yuan M; Han W
    Prog Mol Biol Transl Sci; 2020; 170():461-504. PubMed ID: 32145951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.