These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 38235990)
81. Phenolic Constituents and Inhibitory Effects of Hibiscus sabdariffa L. (Sorrel) Calyx on Cholinergic, Monoaminergic, and Purinergic Enzyme Activities. Oboh G; Adewuni TM; Ademiluyi AO; Olasehinde TA; Ademosun AO J Diet Suppl; 2018 Nov; 15(6):910-922. PubMed ID: 29341798 [TBL] [Abstract][Full Text] [Related]
82. Antidiabetic activity-guided isolation of gallic and protocatechuic acids from Hibiscus sabdariffa calyxes. Alegbe EO; Teralı K; Olofinsan KA; Surgun S; Ogbaga CC; Ajiboye TO J Food Biochem; 2019 Jul; 43(7):e12927. PubMed ID: 31353728 [TBL] [Abstract][Full Text] [Related]
83. Organic Acids from Roselle ( Izquierdo-Vega JA; Arteaga-Badillo DA; Sánchez-Gutiérrez M; Morales-González JA; Vargas-Mendoza N; Gómez-Aldapa CA; Castro-Rosas J; Delgado-Olivares L; Madrigal-Bujaidar E; Madrigal-Santillán E Biomedicines; 2020 Apr; 8(5):. PubMed ID: 32354172 [TBL] [Abstract][Full Text] [Related]
84. A Comparative Study of the Antihypertensive and Cardioprotective Potentials of Hot and Cold Aqueous Extracts of Salem MA; Ezzat SM; Ahmed KA; Alseekh S; Fernie AR; Essam RM Front Pharmacol; 2022; 13():840478. PubMed ID: 35281911 [No Abstract] [Full Text] [Related]
85. Effect of Hibiscus sabdariffa and its anthocyanins on some reproductive aspects in rats. Ali BH; Al-Lawati I; Beegam S; Ziada A; Al Salam S; Nemmar A; Blunden G Nat Prod Commun; 2012 Jan; 7(1):41-4. PubMed ID: 22428240 [TBL] [Abstract][Full Text] [Related]
86. Delphinidin-3-sambubioside from Hibiscus sabdariffa. L attenuates hyperlipidemia in high fat diet-induced obese rats and oleic acid-induced steatosis in HepG2 cells. Long Q; Chen H; Yang W; Yang L; Zhang L Bioengineered; 2021 Dec; 12(1):3837-3849. PubMed ID: 34281481 [No Abstract] [Full Text] [Related]
88. Volatiles and primary metabolites profiling in two Hibiscus sabdariffa (roselle) cultivars via headspace SPME-GC-MS and chemometrics. Farag MA; Rasheed DM; Kamal IM Food Res Int; 2015 Dec; 78():327-335. PubMed ID: 28433299 [TBL] [Abstract][Full Text] [Related]
89. Effects of water extract of Hibiscus sabdariffa, Linn (Malvaceae) 'Roselle' on excretion of a diclofenac formulation. Fakeye TO; Adegoke AO; Omoyeni OC; Famakinde AA Phytother Res; 2007 Jan; 21(1):96-8. PubMed ID: 17094172 [TBL] [Abstract][Full Text] [Related]
90. Hibiscus sabdariffa L. as a source of nutrients, bioactive compounds and colouring agents. Jabeur I; Pereira E; Barros L; Calhelha RC; Soković M; Oliveira MBPP; Ferreira ICFR Food Res Int; 2017 Oct; 100(Pt 1):717-723. PubMed ID: 28873741 [TBL] [Abstract][Full Text] [Related]
91. Effect of sour tea (Hibiscus sabdariffa L.) on arterial hypertension: a systematic review and meta-analysis of randomized controlled trials. Serban C; Sahebkar A; Ursoniu S; Andrica F; Banach M J Hypertens; 2015 Jun; 33(6):1119-27. PubMed ID: 25875025 [TBL] [Abstract][Full Text] [Related]
92. Potential use of red hibiscus flower extract for the production of spray-chilled microparticles: Characterization, stability, and bioaccessibility in vitro of anthocyanins. Oliveira MFS; Figueiredo JA; Norcino LB; Botrel DA; Borges SV Food Res Int; 2023 Dec; 174(Pt 1):113570. PubMed ID: 37986443 [TBL] [Abstract][Full Text] [Related]
93. Effect of Different Drying Methods on the Nutritional Value of Marak S; Shumilina E; Kaushik N; Falch E; Dikiy A Molecules; 2021 Mar; 26(6):. PubMed ID: 33802805 [TBL] [Abstract][Full Text] [Related]
94. Hibiscus anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells. Chang YC; Huang HP; Hsu JD; Yang SF; Wang CJ Toxicol Appl Pharmacol; 2005 Jun; 205(3):201-12. PubMed ID: 15922006 [TBL] [Abstract][Full Text] [Related]
95. Dietary fiber content and associated antioxidant compounds in Roselle flower (Hibiscus sabdariffa L.) beverage. Sáyago-Ayerdi SG; Arranz S; Serrano J; Goñi I J Agric Food Chem; 2007 Sep; 55(19):7886-90. PubMed ID: 17705439 [TBL] [Abstract][Full Text] [Related]
96. Identification of anthocyanic profile and determination of antioxidant activity of Dahlia pinnata petals: A potential source of anthocyanins. Granados-Balbuena SY; Santacruz-Juárez E; Canseco-González D; Aztatzi-Rugerio L; Sánchez-Minutti L; Ramírez-López C; Ocaranza-Sánchez E J Food Sci; 2022 Mar; 87(3):957-967. PubMed ID: 35157324 [TBL] [Abstract][Full Text] [Related]
97. Simultaneous LC-MS quantification of anthocyanins and non-anthocyanin phenolics from blueberries with widely divergent profiles and biological activities. Grace MH; Xiong J; Esposito D; Ehlenfeldt M; Lila MA Food Chem; 2019 Mar; 277():336-346. PubMed ID: 30502155 [TBL] [Abstract][Full Text] [Related]
98. Flower color changes in three Japanese hibiscus species: further quantitative variation of anthocyanin and flavonols. Shimokawa S; Iwashina T; Murakami N Nat Prod Commun; 2015 Mar; 10(3):451-2. PubMed ID: 25924527 [TBL] [Abstract][Full Text] [Related]
99. Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: Pigment stability during storage of microparticles. de Moura SCSR; Berling CL; Germer SPM; Alvim ID; Hubinger MD Food Chem; 2018 Feb; 241():317-327. PubMed ID: 28958534 [TBL] [Abstract][Full Text] [Related]
100. Antioxidant activity of leaf extracts from different Hibiscus sabdariffa accessions and simultaneous determination five major antioxidant compounds by LC-Q-TOF-MS. Wang J; Cao X; Jiang H; Qi Y; Chin KL; Yue Y Molecules; 2014 Dec; 19(12):21226-38. PubMed ID: 25525823 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]