BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 38236069)

  • 1. Facts and Hopes in Using Omics to Advance Combined Immunotherapy Strategies.
    Augustin RC; Cai WL; Luke JJ; Bao R
    Clin Cancer Res; 2024 May; 30(9):1724-1732. PubMed ID: 38236069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic Implications of Tumor Microenvironment in Lung Cancer: Focus on Immune Checkpoint Blockade.
    Genova C; Dellepiane C; Carrega P; Sommariva S; Ferlazzo G; Pronzato P; Gangemi R; Filaci G; Coco S; Croce M
    Front Immunol; 2021; 12():799455. PubMed ID: 35069581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomics-based immuno-oncology: bridging the gap between immunology and tumor biology.
    DiNatale RG; Hakimi AA; Chan TA
    Hum Mol Genet; 2020 Oct; 29(R2):R214-R225. PubMed ID: 33029628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer immunotherapy resistance based on immune checkpoints inhibitors: Targets, biomarkers, and remedies.
    Pérez-Ruiz E; Melero I; Kopecka J; Sarmento-Ribeiro AB; García-Aranda M; De Las Rivas J
    Drug Resist Updat; 2020 Dec; 53():100718. PubMed ID: 32736034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Status of Immune Oncology: Challenges and Opportunities.
    Cesano A; Marincola FM; Thurin M
    Methods Mol Biol; 2020; 2055():3-21. PubMed ID: 31502145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Comprehensive "Omics" Approach from Metabolomics to Advanced Omics for Development of Immune Checkpoint Inhibitors: Potential Strategies for Next Generation of Cancer Immunotherapy.
    Yoon SJ; Lee CB; Chae SU; Jo SJ; Bae SK
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34203237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of Single-Cell Omics in Tumor Immunology.
    Liu J; Qu S; Zhang T; Gao Y; Shi H; Song K; Chen W; Yin W
    Front Immunol; 2021; 12():697412. PubMed ID: 34177965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and Utilization of Biomarkers to Predict Response to Immune Checkpoint Inhibitors.
    Gjoerup O; Brown CA; Ross JS; Huang RSP; Schrock A; Creeden J; Fabrizio D; Tolba K
    AAPS J; 2020 Oct; 22(6):132. PubMed ID: 33057937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies.
    Petitprez F; Meylan M; de Reyniès A; Sautès-Fridman C; Fridman WH
    Front Immunol; 2020; 11():784. PubMed ID: 32457745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating genome-wide CRISPR immune screen with multi-omic clinical data reveals distinct classes of tumor intrinsic immune regulators.
    Hou J; Wang Y; Shi L; Chen Y; Xu C; Saeedi A; Pan K; Bohat R; Egan NA; McKenzie JA; Mbofung RM; Williams LJ; Yang Z; Sun M; Liang X; Rodon Ahnert J; Varadarajan N; Yee C; Chen Y; Hwu P; Peng W
    J Immunother Cancer; 2021 Feb; 9(2):. PubMed ID: 33589527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current strategies for intratumoural immunotherapy - Beyond immune checkpoint inhibition.
    Yuan J; Khilnani A; Brody J; Andtbacka RHI; Hu-Lieskovan S; Luke JJ; Diab A; Marabelle A; Snyder A; Cao ZA; Hodi FS
    Eur J Cancer; 2021 Nov; 157():493-510. PubMed ID: 34561127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue biomarkers of immune checkpoint inhibitor therapy.
    Davoudi F; Moradi A; Sadeghirad H; Kulasinghe A
    Immunol Cell Biol; 2024 Mar; 102(3):179-193. PubMed ID: 38228572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applying high-dimensional single-cell technologies to the analysis of cancer immunotherapy.
    Gohil SH; Iorgulescu JB; Braun DA; Keskin DB; Livak KJ
    Nat Rev Clin Oncol; 2021 Apr; 18(4):244-256. PubMed ID: 33277626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immune Determinants of the Association between Tumor Mutational Burden and Immunotherapy Response across Cancer Types.
    Sinha N; Sinha S; Valero C; Schäffer AA; Aldape K; Litchfield K; Chan TA; Morris LGT; Ruppin E
    Cancer Res; 2022 Jun; 82(11):2076-2083. PubMed ID: 35385572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Omics Perspective Reveals the Different Patterns of Tumor Immune Microenvironment Based on Programmed Death Ligand 1 (PD-L1) Expression and Predictor of Responses to Immune Checkpoint Blockade across Pan-Cancer.
    Huang K; Hu M; Chen J; Wei J; Qin J; Lin S; Du H
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic profiling of immune microenvironment during anti-PD-1 immunotherapy for head and neck squamous cell carcinoma: the IPRICE study.
    Hélène C; Conrad O; Pflumio C; Borel C; Voegelin M; Bernard A; Schultz P; Onea MA; Jung A; Martin S; Burgy M
    BMC Cancer; 2023 Dec; 23(1):1209. PubMed ID: 38066522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmenting Anticancer Immunity Through Combined Targeting of Angiogenic and PD-1/PD-L1 Pathways: Challenges and Opportunities.
    Hack SP; Zhu AX; Wang Y
    Front Immunol; 2020; 11():598877. PubMed ID: 33250900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Omics Data Analyses Identify B7-H3 as a Novel Prognostic Biomarker and Predict Response to Immune Checkpoint Blockade in Head and Neck Squamous Cell Carcinoma.
    Lin W; Xu Y; Gao J; Zhang H; Sun Y; Qiu X; Huang Q; Kong L; Lu JJ
    Front Immunol; 2021; 12():757047. PubMed ID: 34675936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TMB: a promising immune-response biomarker, and potential spearhead in advancing targeted therapy trials.
    Choucair K; Morand S; Stanbery L; Edelman G; Dworkin L; Nemunaitis J
    Cancer Gene Ther; 2020 Dec; 27(12):841-853. PubMed ID: 32341410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turning Cold into Hot: Firing up the Tumor Microenvironment.
    Duan Q; Zhang H; Zheng J; Zhang L
    Trends Cancer; 2020 Jul; 6(7):605-618. PubMed ID: 32610070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.