These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 38236197)
1. An optimized relational database for querying structural patterns in proteins. Angles R; Arenas-Salinas M; García R; Ingram B Database (Oxford); 2024 Jan; 2024():. PubMed ID: 38236197 [TBL] [Abstract][Full Text] [Related]
2. An alternative database approach for management of SNOMED CT and improved patient data queries. Campbell WS; Pedersen J; McClay JC; Rao P; Bastola D; Campbell JR J Biomed Inform; 2015 Oct; 57():350-7. PubMed ID: 26305513 [TBL] [Abstract][Full Text] [Related]
3. Graph4Med: a web application and a graph database for visualizing and analyzing medical databases. Schäfer J; Tang M; Luu D; Bergmann AK; Wiese L BMC Bioinformatics; 2022 Dec; 23(1):537. PubMed ID: 36503436 [TBL] [Abstract][Full Text] [Related]
4. A searching and reporting system for relational databases using a graph-based metadata representation. Hewitt R; Gobbi A; Lee ML J Chem Inf Model; 2005; 45(4):863-9. PubMed ID: 16045279 [TBL] [Abstract][Full Text] [Related]
5. An adaptive spark-based framework for querying large-scale NoSQL and relational databases. Khashan E; Eldesouky A; Elghamrawy S PLoS One; 2021; 16(8):e0255562. PubMed ID: 34411131 [TBL] [Abstract][Full Text] [Related]
6. Algorithms for effective querying of compound graph-based pathway databases. Dogrusoz U; Cetintas A; Demir E; Babur O BMC Bioinformatics; 2009 Nov; 10():376. PubMed ID: 19917102 [TBL] [Abstract][Full Text] [Related]
7. SPARQLGraph: a web-based platform for graphically querying biological Semantic Web databases. Schweiger D; Trajanoski Z; Pabinger S BMC Bioinformatics; 2014 Aug; 15(1):279. PubMed ID: 25127889 [TBL] [Abstract][Full Text] [Related]
8. GSP4PDB: a web tool to visualize, search and explore protein-ligand structural patterns. Angles R; Arenas-Salinas M; García R; Reyes-Suarez JA; Pohl E BMC Bioinformatics; 2020 Mar; 21(Suppl 2):85. PubMed ID: 32164553 [TBL] [Abstract][Full Text] [Related]
9. Clever generation of rich SPARQL queries from annotated relational schema: application to Semantic Web Service creation for biological databases. Wollbrett J; Larmande P; de Lamotte F; Ruiz M BMC Bioinformatics; 2013 Apr; 14():126. PubMed ID: 23586394 [TBL] [Abstract][Full Text] [Related]
12. Protein Construction-Based Data Partitioning Scheme for Alignment of Protein Macromolecular Structures Through Distributed Querying in Federated Databases. Mrozek D; Kwiendacz J; Malysiak-Mrozek B IEEE Trans Nanobioscience; 2020 Jan; 19(1):102-116. PubMed ID: 31329125 [TBL] [Abstract][Full Text] [Related]
13. Effective query filtering for fast homology searching. Williams HE Pac Symp Biocomput; 1999; ():214-25. PubMed ID: 10380199 [TBL] [Abstract][Full Text] [Related]
14. BioMolQuest: integrated database-based retrieval of protein structural and functional information. Bukhman YV; Skolnick J Bioinformatics; 2001 May; 17(5):468-78. PubMed ID: 11331242 [TBL] [Abstract][Full Text] [Related]
15. Processing SPARQL queries with regular expressions in RDF databases. Lee J; Pham MD; Lee J; Han WS; Cho H; Yu H; Lee JH BMC Bioinformatics; 2011 Mar; 12 Suppl 2(Suppl 2):S6. PubMed ID: 21489225 [TBL] [Abstract][Full Text] [Related]
16. Cyclone: java-based querying and computing with Pathway/Genome databases. Le Fèvre F; Smidtas S; Schächter V Bioinformatics; 2007 May; 23(10):1299-300. PubMed ID: 17392333 [TBL] [Abstract][Full Text] [Related]