These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38236517)

  • 1. Enhancing motor imagery detection efficacy using multisensory virtual reality priming.
    Amini Gougeh R; Falk TH
    Front Neuroergon; 2023; 4():1080200. PubMed ID: 38236517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.
    Vourvopoulos A; Bermúdez I Badia S
    J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Navigation in Google Street View
    Yang L; Van Hulle MM
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-modal modified feedback self-paced BCI to control the gait of an avatar.
    Alchalabi B; Faubert J; Labbé DR
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33711832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of Movement and Inhibition Using a Hybrid BCI.
    Chmura J; Rosing J; Collazos S; Goodwin SJ
    Front Neurorobot; 2017; 11():38. PubMed ID: 28860986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What External Variables Affect Sensorimotor Rhythm Brain-Computer Interface (SMR-BCI) Performance?
    Horowitz AJ; Guger C; Korostenskaja M
    HCA Healthc J Med; 2021; 2(3):143-162. PubMed ID: 37427002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating User Proficiency of Motor Imagery for EEG-Based BCI System to Control Simulated Wheelchair.
    Saichoo T; Boonbrahm P; Punsawad Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring virtual environments with an EEG-based BCI through motor imagery.
    Leeb R; Scherer R; Keinrath C; Guger C; Pfurtscheller G
    Biomed Tech (Berl); 2005 Apr; 50(4):86-91. PubMed ID: 15884704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy and Brain Imaging Correlates of an Immersive Motor Imagery BCI-Driven VR System for Upper Limb Motor Rehabilitation: A Clinical Case Report.
    Vourvopoulos A; Jorge C; Abreu R; Figueiredo P; Fernandes JC; Bermúdez I Badia S
    Front Hum Neurosci; 2019; 13():244. PubMed ID: 31354460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Change in brain activity through virtual reality-based brain-machine communication in a chronic tetraplegic subject with muscular dystrophy.
    Hashimoto Y; Ushiba J; Kimura A; Liu M; Tomita Y
    BMC Neurosci; 2010 Sep; 11():117. PubMed ID: 20846418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BCI-Based Control for Ankle Exoskeleton T-FLEX: Comparison of Visual and Haptic Stimuli with Stroke Survivors.
    Barria P; Pino A; Tovar N; Gomez-Vargas D; Baleta K; Díaz CAR; Múnera M; Cifuentes CA
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continual Learning of a Transformer-Based Deep Learning Classifier Using an Initial Model from Action Observation EEG Data to Online Motor Imagery Classification.
    Lee PL; Chen SH; Chang TC; Lee WK; Hsu HT; Chang HH
    Bioengineering (Basel); 2023 Feb; 10(2):. PubMed ID: 36829681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Motor Imagery Based Brain- Computer Interface via FES and VR for Lower Limbs.
    Ren S; Wang W; Hou ZG; Liang X; Wang J; Shi W
    IEEE Trans Neural Syst Rehabil Eng; 2020 Aug; 28(8):1846-1855. PubMed ID: 32746291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Combined Virtual Electrode-Based ESA and CNN Method for MI-EEG Signal Feature Extraction and Classification.
    Lun X; Zhang Y; Zhu M; Lian Y; Hou Y
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor Imagery Performance through Embodied Digital Twins in a Virtual Reality-Enabled Brain-Computer Interface Environment.
    Lakshminarayanan K; Shah R; Ramu V; Madathil D; Yao Y; Wang I; Brahmi B; Rahman MH
    J Vis Exp; 2024 May; (207):. PubMed ID: 38801273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progressive Training for Motor Imagery Brain-Computer Interfaces Using Gamification and Virtual Reality Embodiment.
    Škola F; Tinková S; Liarokapis F
    Front Hum Neurosci; 2019; 13():329. PubMed ID: 31616269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competing at the Cybathlon championship for people with disabilities: long-term motor imagery brain-computer interface training of a cybathlete who has tetraplegia.
    Korik A; McCreadie K; McShane N; Du Bois N; Khodadadzadeh M; Stow J; McElligott J; Carroll Á; Coyle D
    J Neuroeng Rehabil; 2022 Sep; 19(1):95. PubMed ID: 36068570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of combining action observation in virtual reality with kinesthetic motor imagery on cortical activity.
    Lakshminarayanan K; Shah R; Daulat SR; Moodley V; Yao Y; Madathil D
    Front Neurosci; 2023; 17():1201865. PubMed ID: 37383098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BCI to Potentially Enhance Streaming Images to a VR Headset by Predicting Head Rotation.
    Brouwer AM; van der Waa J; Stokking H
    Front Hum Neurosci; 2018; 12():420. PubMed ID: 30459580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.