These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38236663)

  • 1. Ion Selectivity in Multilayered Stacked Nanoporous Graphene.
    K NA; Kumar S
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):5294-5301. PubMed ID: 38236663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene.
    Villalobos LF; Babu DJ; Hsu KJ; Van Goethem C; Agrawal KV
    Acc Mater Res; 2022 Oct; 3(10):1073-1087. PubMed ID: 36338295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic selectivity and filtration from fragmented dehydration in multilayer graphene nanopores.
    Sahu S; Zwolak M
    Nanoscale; 2017 Aug; 9(32):11424-11428. PubMed ID: 28767109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Sieving Across Centimeter-Scale Single-Layer Nanoporous Graphene Membranes.
    Boutilier MSH; Jang D; Idrobo JC; Kidambi PR; Hadjiconstantinou NG; Karnik R
    ACS Nano; 2017 Jun; 11(6):5726-5736. PubMed ID: 28609103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadening the Gas Separation Utility of Monolayer Nanoporous Graphene Membranes by an Ionic Liquid Gating.
    Guo W; Mahurin SM; Unocic RR; Luo H; Dai S
    Nano Lett; 2020 Nov; 20(11):7995-8000. PubMed ID: 33064492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes.
    O'Hern SC; Boutilier MS; Idrobo JC; Song Y; Kong J; Laoui T; Atieh M; Karnik R
    Nano Lett; 2014 Mar; 14(3):1234-41. PubMed ID: 24490698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Dimensional Designer Nanochannels for Controllable Ion Transport in Graphene Oxide Nanomembranes with Tunable Sheet Dimensions.
    Lee T; Kim BS
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):13116-13126. PubMed ID: 32088955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores.
    Jain T; Rasera BC; Guerrero RJ; Boutilier MS; O'Hern SC; Idrobo JC; Karnik R
    Nat Nanotechnol; 2015 Dec; 10(12):1053-7. PubMed ID: 26436566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single- to Few-Layered, Graphene-Based Separation Membranes.
    Zhou F; Fathizadeh M; Yu M
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():17-39. PubMed ID: 29570357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entropic selectivity in air separation via a bilayer nanoporous graphene membrane.
    Wang S; Dai S; Jiang DE
    Phys Chem Chem Phys; 2019 Jul; 21(29):16310-16315. PubMed ID: 31305855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-layered fluorinated graphene nanopores for H
    Wang T; Liu L; Perez-Aguilar JM; Gu Z
    J Mol Model; 2022 Nov; 28(12):403. PubMed ID: 36445488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propylene/propane permeation properties of ethyl cellulose (EC) mixed matrix membranes fabricated by incorporation of nanoporous graphene nanosheets.
    Yuan B; Sun H; Wang T; Xu Y; Li P; Kong Y; Niu QJ
    Sci Rep; 2016 Jun; 6():28509. PubMed ID: 27352851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Fabrication of Defect-Controlled Graphene Oxide Membrane through Shear-Induced Alignment for Regulating Ion Transport.
    Park J; Bang KR; Cho ES
    ACS Omega; 2022 May; 7(19):16568-16575. PubMed ID: 35601333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional nanopores and nanoporous membranes for ion and molecule transport.
    Danda G; Drndić M
    Curr Opin Biotechnol; 2019 Feb; 55():124-133. PubMed ID: 30321759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na⁺ and K⁺ ion selectivity by size-controlled biomimetic graphene nanopores.
    Kang Y; Zhang Z; Shi H; Zhang J; Liang L; Wang Q; Ågren H; Tu Y
    Nanoscale; 2014 Sep; 6(18):10666-72. PubMed ID: 25089590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Li
    Li Y; Yue X; Huang G; Wang M; Zhang Q; Wang C; Yi H; Wang S
    Small; 2021 Dec; 17(48):e2006704. PubMed ID: 33666333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselective Molecular Transport in Multilayer Graphene Nanopores.
    Yan Y; Li W; Král P
    Nano Lett; 2017 Nov; 17(11):6742-6746. PubMed ID: 28972378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dehydration as a Universal Mechanism for Ion Selectivity in Graphene and Other Atomically Thin Pores.
    Sahu S; Di Ventra M; Zwolak M
    Nano Lett; 2017 Aug; 17(8):4719-4724. PubMed ID: 28678508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing artificial ion channels with strict K
    Li J; Du L; Kong X; Wu J; Lu D; Jiang L; Guo W
    Natl Sci Rev; 2023 Dec; 10(12):nwad260. PubMed ID: 37954195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dehydration-Determined Ion Selectivity of Graphene Subnanopores.
    Fu Y; Su S; Zhang N; Wang Y; Guo X; Xue J
    ACS Appl Mater Interfaces; 2020 May; 12(21):24281-24288. PubMed ID: 32349478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.