These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38236734)

  • 1. Adaptive cooling strategy via human hair: High optothermal conversion efficiency of solar radiation into thermal dissipation.
    Pal SK; Jeong S; Otoufat T; Bae H; Kim G
    Proc Natl Acad Sci U S A; 2024 Jan; 121(4):e2312297121. PubMed ID: 38236734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scalable Bacterial Cellulose-Based Radiative Cooling Materials with Switchable Transparency for Thermal Management and Enhanced Solar Energy Harvesting.
    Shi S; Lv P; Valenzuela C; Li B; Liu Y; Wang L; Feng W
    Small; 2023 Sep; 19(39):e2301957. PubMed ID: 37231557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal inorganic nano- and microparticles for passive daytime radiative cooling.
    Woo HY; Choi Y; Chung H; Lee DW; Paik T
    Nano Converg; 2023 Apr; 10(1):17. PubMed ID: 37071232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-Day Freshwater Harvesting by Selective Solar Absorption and Radiative Cooling.
    Xi Z; Li S; Yu L; Yan H; Chen M
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):26255-26263. PubMed ID: 35622905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range.
    Ding Z; Pattelli L; Xu H; Sun W; Li X; Pan L; Zhao J; Wang C; Zhang X; Song Y; Qiu J; Li Y; Yang R
    Small; 2022 Jun; 18(25):e2202400. PubMed ID: 35587771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiative-Cooling Composites with Enhanced Infrared Emissivity by Structural Infrared Scattering through Indium Tin Oxide Nanoparticles in a Polymer Matrix.
    Park S; Pal SK; Otoufat T; Kim G
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16026-16033. PubMed ID: 36920422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical-Morphology Metal/Polymer Heterostructure for Scalable Multimodal Thermal Management.
    Yang Z; Jia Y; Zhang J
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24755-24765. PubMed ID: 35580302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectively Enhancing Solar Scattering for Direct Radiative Cooling through Control of Polymer Nanofiber Morphology.
    Kim H; McSherry S; Brown B; Lenert A
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43553-43559. PubMed ID: 32799439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiative Cooling and Solar Heating Janus Films for Personal Thermal Management.
    Dai B; Li X; Xu T; Zhang X
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18877-18883. PubMed ID: 35413199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antireflection and radiative cooling difunctional coating design for silicon solar cells.
    Tu Y; Tan X; Yang X; Qi G; Yan K; Kang Z
    Opt Express; 2023 Jul; 31(14):22296-22307. PubMed ID: 37475344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Radiative Cooling by Mechanochromic Electrospun Micro-Nanofiber Matrix.
    Pyun KR; Jeong S; Yoo MJ; Choi SH; Baik G; Lee M; Song J; Ko SH
    Small; 2024 May; 20(20):e2308572. PubMed ID: 38087885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance simulation of polymer-based nanoparticle and void dispersed photonic structures for radiative cooling.
    Bijarniya JP; Sarkar J; Maiti P
    Sci Rep; 2021 Jan; 11(1):893. PubMed ID: 33441872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose-Based Radiative Cooling and Solar Heating Powers Ionic Thermoelectrics.
    Liao M; Banerjee D; Hallberg T; Åkerlind C; Alam MM; Zhang Q; Kariis H; Zhao D; Jonsson MP
    Adv Sci (Weinh); 2023 Mar; 10(8):e2206510. PubMed ID: 36646654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transparent Glass Surfaces with Silica Nanopillars for Radiative Cooling.
    Arrés Chillón J; Paulillo B; Mazumder P; Pruneri V
    ACS Appl Nano Mater; 2022 Dec; 5(12):17606-17612. PubMed ID: 36583120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structurally Colored Radiative Cooling Cellulosic Films.
    Zhu W; Droguet B; Shen Q; Zhang Y; Parton TG; Shan X; Parker RM; De Volder MFL; Deng T; Vignolini S; Li T
    Adv Sci (Weinh); 2022 Sep; 9(26):e2202061. PubMed ID: 35843893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired zero-energy thermal-management device based on visible and infrared thermochromism for all-season energy saving.
    Zhang Q; Wang Y; Lv Y; Yu S; Ma R
    Proc Natl Acad Sci U S A; 2022 Sep; 119(38):e2207353119. PubMed ID: 36095218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the sun and outer space.
    Ao X; Li B; Zhao B; Hu M; Ren H; Yang H; Liu J; Cao J; Feng J; Yang Y; Qi Z; Li L; Zou C; Pei G
    Proc Natl Acad Sci U S A; 2022 Apr; 119(17):e2120557119. PubMed ID: 35439052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A solar/radiative cooling dual-regulation smart window based on shape-morphing kirigami structures.
    Wang S; Dong Y; Li Y; Ryu K; Dong Z; Chen J; Dai Z; Ke Y; Yin J; Long Y
    Mater Horiz; 2023 Oct; 10(10):4243-4250. PubMed ID: 37555343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biologically Inspired Scalable-Manufactured Dual-layer Coating with a Hierarchical Micropattern for Highly Efficient Passive Radiative Cooling and Robust Superhydrophobicity.
    Wang S; Wang Y; Zou Y; Chen G; Ouyang J; Jia D; Zhou Y
    ACS Appl Mater Interfaces; 2021 May; 13(18):21888-21897. PubMed ID: 33909403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.