These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38236764)

  • 1. Fine Tuning Water States in Hydrogels for High Voltage Aqueous Batteries.
    Li C; Zhu X; Wang D; Yang S; Zhang R; Li P; Fan J; Li H; Zhi C
    ACS Nano; 2024 Jan; 18(4):3101-3114. PubMed ID: 38236764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lean-water hydrogel electrolyte for zinc ion batteries.
    Wang Y; Li Q; Hong H; Yang S; Zhang R; Wang X; Jin X; Xiong B; Bai S; Zhi C
    Nat Commun; 2023 Jul; 14(1):3890. PubMed ID: 37393327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting High-Voltage Stability of Dual-Ion Aqueous Electrolyte Reinforced by Incorporation of Fiberglass into Zwitterionic Hydrogel Electrolyte.
    Zhanadilov O; Kim HJ; Lai HJ; Jiang JC; Konarov A; Mentbayeva A; Bakenov Z; Sohn KS; Kaghazchi P; Myung ST
    Small; 2023 Nov; 19(44):e2302973. PubMed ID: 37377256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polysaccharide hydrogel electrolytes with robust interfacial contact to electrodes for quasi-solid state flexible aqueous zinc ion batteries with efficient suppressing of dendrite growth.
    Deng Y; Wu Y; Wang L; Zhang K; Wang Y; Yan L
    J Colloid Interface Sci; 2023 Mar; 633():142-154. PubMed ID: 36436347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the Electrolyte Solvation Structure via a Nonaqueous Co-Solvent to Enable High-Voltage Aqueous Lithium-Ion Batteries.
    Liu D; Yuan L; Li X; Chen J; Xiong R; Meng J; Zhu S; Huang Y
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17585-17593. PubMed ID: 35385244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small-Dipole-Molecule-Containing Electrolytes for High-Voltage Aqueous Rechargeable Batteries.
    Huang Z; Wang T; Li X; Cui H; Liang G; Yang Q; Chen Z; Chen A; Guo Y; Fan J; Zhi C
    Adv Mater; 2022 Jan; 34(4):e2106180. PubMed ID: 34699667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogel Electrolytes for Quasi-Solid Zinc-Based Batteries.
    Lu K; Jiang T; Hu H; Wu M
    Front Chem; 2020; 8():546728. PubMed ID: 33330352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water and Salt Concentration-Dependent Electrochemical Performance of Hydrogel Electrolytes in Zinc-Ion Batteries.
    Zhu D; Li J; Zheng Z; Ye S; Pan Y; Wu J; She F; Lai L; Zhou Z; Chen J; Li H; Wei L; Chen Y
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16175-16185. PubMed ID: 38509690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable Pea Protein Fibril Hydrogel-Based Quasi-Solid-State Zn-Ion Battery.
    Zhao Z; Zhang S; Xu Z; Chen L; Li G
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49060-49070. PubMed ID: 37831820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular crowding electrolytes for high-voltage aqueous batteries.
    Xie J; Liang Z; Lu YC
    Nat Mater; 2020 Sep; 19(9):1006-1011. PubMed ID: 32313263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable, Safe, and High-Performance Li-Ion Batteries.
    Ji D; Kim J
    Nanomicro Lett; 2023 Nov; 16(1):2. PubMed ID: 37930432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Formation of Interphases on both Positive and Negative Electrodes in High-Voltage Aqueous Lithium-Ion Batteries.
    Hou X; Pollard TP; Zhao W; He X; Ju X; Wang J; Du L; Paillard E; Lin H; Xu K; Borodin O; Winter M; Li J
    Small; 2022 Feb; 18(5):e2104986. PubMed ID: 34850544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bio-Inspired Methylation Approach to Salt-Concentrated Hydrogel Electrolytes for Long-Life Rechargeable Batteries.
    Liu T; Du X; Wu H; Ren Y; Wang J; Wang H; Chen Z; Zhao J; Cui G
    Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202311589. PubMed ID: 37669903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized Water-In-Salt Electrolyte for Aqueous Lithium-Ion Batteries.
    Jaumaux P; Yang X; Zhang B; Safaei J; Tang X; Zhou D; Wang C; Wang G
    Angew Chem Int Ed Engl; 2021 Sep; 60(36):19965-19973. PubMed ID: 34185948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative Chloride Hydrogel Electrolytes Enabling Ultralow-Temperature Aqueous Zinc Ion Batteries by the Hofmeister Effect.
    Yan C; Wang Y; Deng X; Xu Y
    Nanomicro Lett; 2022 Apr; 14(1):98. PubMed ID: 35394219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Progress in "Water-in-Salt" Electrolytes Toward Non-lithium Based Rechargeable Batteries.
    Wang Y; Meng X; Sun J; Liu Y; Hou L
    Front Chem; 2020; 8():595. PubMed ID: 32850632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Next-generation magnesium-ion batteries: The quasi-solid-state approach to multivalent metal ion storage.
    Leong KW; Pan W; Yi X; Luo S; Zhao X; Zhang Y; Wang Y; Mao J; Chen Y; Xuan J; Wang H; Leung DYC
    Sci Adv; 2023 Aug; 9(32):eadh1181. PubMed ID: 37556543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Single-Ion Conducting Borate Network Polymer as a Viable Quasi-Solid Electrolyte for Lithium Metal Batteries.
    Shin DM; Bachman JE; Taylor MK; Kamcev J; Park JG; Ziebel ME; Velasquez E; Jarenwattananon NN; Sethi GK; Cui Y; Long JR
    Adv Mater; 2020 Mar; 32(10):e1905771. PubMed ID: 31985110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Electric-Field-Reinforced Hydrophobic Cationic Sieve Lowers the Concentration Threshold of Water-In-Salt Electrolytes.
    Zhou A; Zhang J; Chen M; Yue J; Lv T; Liu B; Zhu X; Qin K; Feng G; Suo L
    Adv Mater; 2022 Nov; 34(47):e2207040. PubMed ID: 36121604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Voltage Operation of a V
    Zhang H; Liu X; Li H; Qin B; Passerini S
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15305-15312. PubMed ID: 32159332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.