These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38236807)

  • 1. Foundations of the Wentzel-Kramers-Brillouin approximation for models of cochlear mechanics in 1- and 2-D.
    Frost BL
    J Acoust Soc Am; 2024 Jan; 155(1):358-379. PubMed ID: 38236807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mode-coupling Liouville-Green approximation for a two-dimensional cochlear model.
    Watts L
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2266-71. PubMed ID: 11108367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase of shear vibrations within cochlear partition leads to activation of the cochlear amplifier.
    Lamb JS; Chadwick RS
    PLoS One; 2014; 9(2):e85969. PubMed ID: 24551037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent reflection in a two-dimensional cochlea: Short-wave versus long-wave scattering in the generation of reflection-source otoacoustic emissions.
    Shera CA; Tubis A; Talmadge CL
    J Acoust Soc Am; 2005 Jul; 118(1):287-313. PubMed ID: 16119350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approximate methods for modeling the scattering properties of nonspherical particles: evaluation of the Wentzel-Kramers-Brillouin method.
    Klett JD; Sutherland RA
    Appl Opt; 1992 Jan; 31(3):373-86. PubMed ID: 20717415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of WKB and finite difference calculations for a two-dimensional cochlear model.
    Steele CR; Taber LA
    J Acoust Soc Am; 1979 Apr; 65(4):1001-6. PubMed ID: 447913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Otoacoustic emissions reveal the micromechanical role of organ-of-Corti cytoarchitecture in cochlear amplification.
    Shera CA; Altoè A
    Proc Natl Acad Sci U S A; 2023 Oct; 120(41):e2305921120. PubMed ID: 37796989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TUNNEX: An easy-to-use wentzel-kramers-brillouin (WKB) implementation to compute tunneling half-lives.
    Quanz H; Schreiner PR
    J Comput Chem; 2019 Jan; 40(2):543-547. PubMed ID: 30341957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The origin of periodicity in the spectrum of evoked otoacoustic emissions.
    Zweig G; Shera CA
    J Acoust Soc Am; 1995 Oct; 98(4):2018-47. PubMed ID: 7593924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model cochlear partition involving longitudinal elasticity.
    Jaffer TS; Kunov H; Wong W
    J Acoust Soc Am; 2002 Aug; 112(2):576-89. PubMed ID: 12186039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cochlear mechanics with fluid viscosity and compressibility.
    Deepu P
    Phys Rev E; 2019 Mar; 99(3-1):032417. PubMed ID: 30999444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do forward- and backward-traveling waves occur within the cochlea? Countering the critique of Nobili et al.
    Shera CA; Tubis A; Talmadge CL
    J Assoc Res Otolaryngol; 2004 Dec; 5(4):349-59. PubMed ID: 15675000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics.
    Epp B; Verhey JL; Mauermann M
    J Acoust Soc Am; 2010 Oct; 128(4):1870-83. PubMed ID: 20968359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid focusing and viscosity allow high gain and stability of the cochlear response.
    Sisto R; Belardinelli D; Moleti A
    J Acoust Soc Am; 2021 Dec; 150(6):4283. PubMed ID: 34972263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression tuning of distortion-product otoacoustic emissions: results from cochlear mechanics simulation.
    Liu YW; Neely ST
    J Acoust Soc Am; 2013 Feb; 133(2):951-61. PubMed ID: 23363112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Otoacoustic estimation of cochlear tuning: validation in the chinchilla.
    Shera CA; Guinan JJ; Oxenham AJ
    J Assoc Res Otolaryngol; 2010 Sep; 11(3):343-65. PubMed ID: 20440634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Taming the diffusion approximation through a controlling-factor WKB method.
    Pande J; Shnerb NM
    Phys Rev E; 2020 Dec; 102(6-1):062410. PubMed ID: 33466058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves.
    Shera CA
    J Acoust Soc Am; 2003 Jul; 114(1):244-62. PubMed ID: 12880039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model and analysis for the nonlinear amplification of waves in the cochlea.
    Fessel K; Holmes MH
    Math Biosci; 2018 Jul; 301():10-20. PubMed ID: 29382493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the large-scale spectral structure of otoacoustic emissions.
    Sisto R; Moleti A
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1234-40. PubMed ID: 15807012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.