These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38236823)

  • 1. A mechanical model of ocular bulb vibrations and implications for acoustic tonometry.
    Tambroni N; Tomassetti G; Lombardi S; Repetto R
    PLoS One; 2024; 19(1):e0294825. PubMed ID: 38236823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Who bears the load? IOP-induced collagen fiber recruitment over the corneoscleral shell.
    Foong TY; Hua Y; Amini R; Sigal IA
    Exp Eye Res; 2023 May; 230():109446. PubMed ID: 36935071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance frequency of fluid-filled and prestressed spherical shell-A model of the human eyeball.
    Shih PJ; Guo YR
    J Acoust Soc Am; 2016 Apr; 139(4):1784. PubMed ID: 27106326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corneoscleral stiffening increases IOP spike magnitudes during rapid microvolumetric change in the eye.
    Clayson K; Pan X; Pavlatos E; Short R; Morris H; Hart RT; Liu J
    Exp Eye Res; 2017 Dec; 165():29-34. PubMed ID: 28864177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-contact tonometry using Corvis ST: analysis of corneal vibrations and their relation with intraocular pressure.
    Boszczyk A; Kasprzak H; Siedlecki D
    J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):B28-B34. PubMed ID: 31044952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive finite element eye model for the compensation of biometric influences on acoustic tonometry.
    Osmers J; Kaiser N; Sorg M; Fischer A
    Comput Methods Programs Biomed; 2021 Mar; 200():105930. PubMed ID: 33486338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air puff induced corneal vibrations: theoretical simulations and clinical observations.
    Han Z; Tao C; Zhou D; Sun Y; Zhou C; Ren Q; Roberts CJ
    J Refract Surg; 2014 Mar; 30(3):208-13. PubMed ID: 24763727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The stress-strain behavior of the corneoscleral envelope of the eye. I. Development of a system for making in vivo measurements using optical interferometry.
    Brubaker RF; Ezekiel S; Chin L; Young L; Johnson SA; Beeler GW
    Exp Eye Res; 1975 Jul; 21(1):37-46. PubMed ID: 806457
    [No Abstract]   [Full Text] [Related]  

  • 9. Acoustic tonometry: feasibility study of a new principle of intraocular pressure measurement.
    von Freyberg A; Sorg M; Fuhrmann M; Kreiner CF; Pfannkuche J; Klink T; Hensler D; Grehn F; Goch G
    J Glaucoma; 2009; 18(4):316-20. PubMed ID: 19365198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluid-structure interaction problem in biomechanics: prestressed vibrations of the eye by the finite element method.
    Coquart L; Depeursinge C; Curnier A; Ohayon R
    J Biomech; 1992 Oct; 25(10):1105-18. PubMed ID: 1400511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic response of intraocular pressure and biomechanical effects of the eye considering fluid-structure interaction.
    Salimi S; Park SS; Freiheit T
    J Biomech Eng; 2011 Sep; 133(9):091009. PubMed ID: 22010744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [New measuring method of non-contact tonometry].
    Plagwitz KU; Lemke K
    Klin Monbl Augenheilkd; 1999 Jan; 214(1):40-3. PubMed ID: 10198881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The elasticity and rigidity of the outer coats of the eye.
    Asejczyk-Widlicka M; Pierscionek BK
    Br J Ophthalmol; 2008 Oct; 92(10):1415-8. PubMed ID: 18815423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Possibilities of using of transpalpebral acoustic tonometry in pediatric ophthalmology].
    Obrubov SA; Rogozhina IV; Mishustin AV
    Vestn Oftalmol; 2005; 121(3):23-5. PubMed ID: 16075625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on establishment and mechanics application of finite element model of bovine eye.
    Cui YH; Huang JF; Cheng SY; Wei W; Shang L; Li N; Xiong K
    BMC Ophthalmol; 2015 Aug; 15():101. PubMed ID: 26268321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Closed-form ametropic pressure-volume and ocular rigidity solutions.
    Greene PR
    Am J Optom Physiol Opt; 1985 Dec; 62(12):870-8. PubMed ID: 4083331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pilot study for intraocular pressure measurements based on vibroacoustic parameters.
    Kim D; Chung Y; Yeon Y; Cho H; Lim HW; Park J; Lee WJ
    Sci Rep; 2021 Jan; 11(1):1264. PubMed ID: 33441815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical contribution of the sclera to dynamic corneal response in air-puff induced deformation in human donor eyes.
    Nguyen BA; Reilly MA; Roberts CJ
    Exp Eye Res; 2020 Feb; 191():107904. PubMed ID: 31883460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Pneumatonometry and Transpalpebral Tonometry Measurements of Intraocular Pressure during Scleral Lens Wear.
    Fogt JS; Nau CB; Schornack M; Shorter E; Nau A; Harthan JS
    Optom Vis Sci; 2020 Sep; 97(9):711-719. PubMed ID: 32941336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Age on Ocular Biomechanical Properties in a Canine Glaucoma Model with ADAMTS10 Mutation.
    Palko JR; Morris HJ; Pan X; Harman CD; Koehl KL; Gelatt KN; Plummer CE; Komáromy AM; Liu J
    PLoS One; 2016; 11(6):e0156466. PubMed ID: 27271467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.