These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 38236953)
1. Protein-Functionalized Gold Nanospheres with Tunable Photothermal Efficiency for the Near-Infrared Photothermal Ablation of Biofilms. Amarasekara DL; Kariyawasam CS; Hejny MA; Torgall VB; Werfel TA; Fitzkee NC ACS Appl Mater Interfaces; 2024 Jan; 16(4):4321-4332. PubMed ID: 38236953 [TBL] [Abstract][Full Text] [Related]
2. Near-Infrared Photothermal Ablation of Biofilms using ProteinFunctionalized Gold Nanospheres with a Tunable Temperature Response. Amarasekara DL; Kariyawasam CS; Hejny MA; Torgall VB; Werfel TA; Fitzkee NC bioRxiv; 2023 Aug; ():. PubMed ID: 37645901 [TBL] [Abstract][Full Text] [Related]
3. Surface-Adaptive Gold Nanoparticles with Effective Adherence and Enhanced Photothermal Ablation of Methicillin-Resistant Staphylococcus aureus Biofilm. Hu D; Li H; Wang B; Ye Z; Lei W; Jia F; Jin Q; Ren KF; Ji J ACS Nano; 2017 Sep; 11(9):9330-9339. PubMed ID: 28806528 [TBL] [Abstract][Full Text] [Related]
4. Shape tunable gallium nanorods mediated tumor enhanced ablation through near-infrared photothermal therapy. Sun X; Sun M; Liu M; Yuan B; Gao W; Rao W; Liu J Nanoscale; 2019 Feb; 11(6):2655-2667. PubMed ID: 30601530 [TBL] [Abstract][Full Text] [Related]
5. Photoactivatable Nitric Oxide-Releasing Gold Nanocages for Enhanced Hyperthermia Treatment of Biofilm-Associated Infections. Tang Y; Wang T; Feng J; Rong F; Wang K; Li P; Huang W ACS Appl Mater Interfaces; 2021 Nov; 13(43):50668-50681. PubMed ID: 34669372 [TBL] [Abstract][Full Text] [Related]
6. Using a Bacterial Protein to Selectively Target Bacterial Biofilms: Treatment of S. epidermidis Biofilms with Targeted Photothermal Gold Nanoparticles. Amarasekara DL; Somarathne RP; Shaikh T; Hejny MA; McCaffrey ER; Fitzkee NC bioRxiv; 2024 Sep; ():. PubMed ID: 39282323 [TBL] [Abstract][Full Text] [Related]
8. Thermally Triggered in Situ Assembly of Gold Nanoparticles for Cancer Multimodal Imaging and Photothermal Therapy. Sun M; Peng D; Hao H; Hu J; Wang D; Wang K; Liu J; Guo X; Wei Y; Gao W ACS Appl Mater Interfaces; 2017 Mar; 9(12):10453-10460. PubMed ID: 28271705 [TBL] [Abstract][Full Text] [Related]
9. Enhanced photoconversion performance of NdVO Chang M; Wang M; Shu M; Zhao Y; Ding B; Huang S; Hou Z; Han G; Lin J Acta Biomater; 2019 Nov; 99():295-306. PubMed ID: 31437636 [TBL] [Abstract][Full Text] [Related]
10. Acidity-activated aggregation and accumulation of self-complementary zwitterionic peptide-decorated gold nanoparticles for photothermal biofilm eradication. Yang ZR; Qin H; Fan JW; Du K; Qi L; Hou D; Jiang H; Zhu J J Colloid Interface Sci; 2024 Jun; 663():1074-1086. PubMed ID: 38331692 [TBL] [Abstract][Full Text] [Related]
11. Protein-Induced Gold Nanoparticle Assembly for Improving the Photothermal Effect in Cancer Therapy. Wang J; Zhang Y; Jin N; Mao C; Yang M ACS Appl Mater Interfaces; 2019 Mar; 11(12):11136-11143. PubMed ID: 30869510 [TBL] [Abstract][Full Text] [Related]
12. PEGylated graphene oxide-capped gold nanorods/silica nanoparticles as multifunctional drug delivery platform with enhanced near-infrared responsiveness. Qi Z; Shi J; Zhang Z; Cao Y; Li J; Cao S Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109889. PubMed ID: 31499943 [TBL] [Abstract][Full Text] [Related]
13. Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-hybridized graphene oxide under NIR illumination. Yang L; Tseng YT; Suo G; Chen L; Yu J; Chiu WJ; Huang CC; Lin CH ACS Appl Mater Interfaces; 2015 Mar; 7(9):5097-106. PubMed ID: 25705789 [TBL] [Abstract][Full Text] [Related]
14. The impact of size and surface ligand of gold nanorods on liver cancer accumulation and photothermal therapy in the second near-infrared window. Yang H; He H; Tong Z; Xia H; Mao Z; Gao C J Colloid Interface Sci; 2020 Apr; 565():186-196. PubMed ID: 31972332 [TBL] [Abstract][Full Text] [Related]
15. Ciprofloxacin conjugated gold nanorods with pH induced surface charge transformable activities to combat drug resistant bacteria and their biofilms. Yin M; Qiao Z; Yan D; Yang M; Yang L; Wan X; Chen H; Luo J; Xiao H Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112292. PubMed ID: 34474843 [TBL] [Abstract][Full Text] [Related]
16. Nucleic acid-functionalized gold nanoparticles as intelligent photothermal therapy agents for precise cancer treatment. Tang H; Zhang X; Bao Y; Shen H; Fan M; Wang Y; Xiang S; Ran X Nanotechnology; 2024 Aug; 35(46):. PubMed ID: 39146957 [TBL] [Abstract][Full Text] [Related]
17. Concentration-dependent photothermal conversion efficiency of gold nanoparticles under near-infrared laser and broadband irradiation. Vikas ; Kumar R; Soni S Beilstein J Nanotechnol; 2023; 14():205-217. PubMed ID: 36793324 [TBL] [Abstract][Full Text] [Related]
18. An injectable multifunctional hydrogel for eradication of bacterial biofilms and wound healing. Du T; Xiao Z; Zhang G; Wei L; Cao J; Zhang Z; Li X; Song Z; Wang W; Liu J; Du X; Wang S Acta Biomater; 2023 Apr; 161():112-133. PubMed ID: 36907234 [TBL] [Abstract][Full Text] [Related]
19. Preparation of envelope-type lipid nanoparticles containing gold nanorods for photothermal cancer therapy. Paraiso WKD; Tanaka H; Sato Y; Shirane D; Suzuki N; Ogra Y; Tange K; Nakai Y; Yoshioka H; Harashima H; Akita H Colloids Surf B Biointerfaces; 2017 Dec; 160():715-723. PubMed ID: 29035819 [TBL] [Abstract][Full Text] [Related]
20. Assembled gold nanorods for the photothermal killing of bacteria. Yang T; Wang D; Liu X Colloids Surf B Biointerfaces; 2019 Jan; 173():833-841. PubMed ID: 30551299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]