These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38237056)

  • 41. Conjugated Block Copolymers for Functional Nanostructures.
    Kang S; Kim GH; Park SJ
    Acc Chem Res; 2022 Aug; 55(16):2224-2234. PubMed ID: 35921179
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Consequences of a cosolvent on the structure and molecular dynamics of supramolecular polymers in water.
    Lafleur RPM; Lou X; Pavan GM; Palmans ARA; Meijer EW
    Chem Sci; 2018 Aug; 9(29):6199-6209. PubMed ID: 30090307
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Construction of Stimuli-Responsive Functional Materials via Hierarchical Self-Assembly Involving Coordination Interactions.
    Chen LJ; Yang HB
    Acc Chem Res; 2018 Nov; 51(11):2699-2710. PubMed ID: 30285407
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hooking Together Sigmoidal Monomers into Supramolecular Polymers.
    Carini M; Marongiu M; Strutyński K; Saeki A; Melle-Franco M; Mateo-Alonso A
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15788-15792. PubMed ID: 31512362
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Supramolecular polymers in aqueous medium: rational design based on directional hydrophobic interactions.
    Ustinov A; Weissman H; Shirman E; Pinkas I; Zuo X; Rybtchinski B
    J Am Chem Soc; 2011 Oct; 133(40):16201-11. PubMed ID: 21882828
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis of Adhesive Polyrotaxanes Through Sequential Self-Assembly via Supramolecular Interactions and Dynamic Covalent Interactions.
    Zhou X; Hu Z; Ji X
    Chemistry; 2024 Aug; ():e202402156. PubMed ID: 39140795
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-Assembling Supramolecular Dendrimers for Biomedical Applications: Lessons Learned from Poly(amidoamine) Dendrimers.
    Lyu Z; Ding L; Tintaru A; Peng L
    Acc Chem Res; 2020 Dec; 53(12):2936-2949. PubMed ID: 33275845
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface.
    Mali KS; Adisoejoso J; Ghijsens E; De Cat I; De Feyter S
    Acc Chem Res; 2012 Aug; 45(8):1309-20. PubMed ID: 22612471
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-assembly of N3-substituted xanthines in the solid state and at the solid-liquid interface.
    Ciesielski A; Haar S; Bényei A; Paragi G; Guerra CF; Bickelhaupt FM; Masiero S; Szolomájer J; Samorì P; Spada GP; Kovács L
    Langmuir; 2013 Jun; 29(24):7283-90. PubMed ID: 23278633
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design of materials with supramolecular polymers.
    Clemons TD; Stupp SI
    Prog Polym Sci; 2020 Dec; 111():101310. PubMed ID: 33082608
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D Printing Polymers with Supramolecular Functionality for Biological Applications.
    Pekkanen AM; Mondschein RJ; Williams CB; Long TE
    Biomacromolecules; 2017 Sep; 18(9):2669-2687. PubMed ID: 28762718
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Two-dimensional Supramolecular Polymers Based on Selectively Recognized Aromatic Cation-π and Donor-Acceptor Motifs for Photocatalytic Hydrogen Evolution.
    Gao Z; Shi L; Yan F; Han Y; Yuan W; Tian W
    Angew Chem Int Ed Engl; 2023 May; 62(21):e202302274. PubMed ID: 36942477
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synergistic Assembly of Covalent and Supramolecular Polymers.
    Bai L; Zhao Y
    Macromol Rapid Commun; 2016 Jun; 37(11):920-3. PubMed ID: 27076255
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules.
    Kim HJ; Kim T; Lee M
    Acc Chem Res; 2011 Jan; 44(1):72-82. PubMed ID: 21128602
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Supramolecular Polymerization of Supermacrocycles: Effect of Molecular Conformations on Kinetics and Morphology.
    Yamauchi M; Adhikari B; Prabhu DD; Lin X; Karatsu T; Ohba T; Shimizu N; Takagi H; Haruki R; Adachi SI; Kajitani T; Fukushima T; Yagai S
    Chemistry; 2017 Apr; 23(22):5270-5280. PubMed ID: 28120455
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultrathin Supramolecular Architectures Self-Assembled from a
    Cheng Q; Wu H; Zhang H; Yuan S; Hao A; Xing P; Zhao Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9673-9681. PubMed ID: 32013383
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Porphyrin-based supramolecular polymers.
    Lee H; Park H; Ryu DY; Jang WD
    Chem Soc Rev; 2023 Mar; 52(5):1947-1974. PubMed ID: 36786672
    [TBL] [Abstract][Full Text] [Related]  

  • 58. X-ray Fiber Diffraction and Computational Analyses of Stacked Hexads in Supramolecular Polymers: Insight into Self-Assembly in Water by Prospective Prebiotic Nucleobases.
    Alenaizan A; Borca CH; Karunakaran SC; Kendall AK; Stubbs G; Schuster GB; Sherrill CD; Hud NV
    J Am Chem Soc; 2021 Apr; 143(16):6079-6094. PubMed ID: 33852800
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural Control of Bisurea-Based Supramolecular Polymers: Influence of an Ester Moiety.
    Dirany M; Ayzac V; Isare B; Raynal M; Bouteiller L
    Langmuir; 2015 Oct; 31(42):11443-51. PubMed ID: 26461519
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Supramolecular Polymers: Inherently Dynamic Materials.
    Roy N; Schädler V; Lehn JM
    Acc Chem Res; 2024 Feb; 57(3):349-361. PubMed ID: 38277510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.