These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38237174)

  • 1. Data augmentation for invasive brain-computer interfaces based on stereo-electroencephalography (SEEG).
    Wu X; Zhang D; Li G; Gao X; Metcalfe B; Chen L
    J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38237174
    [No Abstract]   [Full Text] [Related]  

  • 2. Speech decoding from stereo-electroencephalography (sEEG) signals using advanced deep learning methods.
    Wu X; Wellington S; Fu Z; Zhang D
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38885688
    [No Abstract]   [Full Text] [Related]  

  • 3. Data Augmentation for Motor Imagery Signal Classification Based on a Hybrid Neural Network.
    Zhang K; Xu G; Han Z; Ma K; Zheng X; Chen L; Duan N; Zhang S
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32796607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data augmentation for enhancing EEG-based emotion recognition with deep generative models.
    Luo Y; Zhu LZ; Wan ZY; Lu BL
    J Neural Eng; 2020 Oct; 17(5):056021. PubMed ID: 33052888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning With Convolutional Neural Networks for Motor Brain-Computer Interfaces Based on Stereo-Electroencephalography (SEEG).
    Wu X; Jiang S; Li G; Liu S; Metcalfe B; Chen L; Zhang D
    IEEE J Biomed Health Inform; 2023 May; 27(5):2387-2398. PubMed ID: 37022416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding continuous kinetic information of grasp from stereo-electroencephalographic (SEEG) recordings.
    Wu X; Li G; Jiang S; Wellington S; Liu S; Wu Z; Metcalfe B; Chen L; Zhang D
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35395645
    [No Abstract]   [Full Text] [Related]  

  • 7. Channel Selection for Stereo- Electroencephalography (SEEG)-Based Invasive Brain-Computer Interfaces Using Deep Learning Methods.
    Wu X; Li G; Gao X; Metcalfe B; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():800-811. PubMed ID: 38349834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing differential representation of hand movements in multiple domains using stereo-electroencephalographic recordings.
    Li G; Jiang S; Meng J; Chai G; Wu Z; Fan Z; Hu J; Sheng X; Zhang D; Chen L; Zhu X
    Neuroimage; 2022 Apr; 250():118969. PubMed ID: 35124225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generative Adversarial Networks-Based Data Augmentation for Brain-Computer Interface.
    Fahimi F; Dosen S; Ang KK; Mrachacz-Kersting N; Guan C
    IEEE Trans Neural Netw Learn Syst; 2021 Sep; 32(9):4039-4051. PubMed ID: 32841127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep-learning online EEG decoding brain-computer interface using error-related potentials recorded with a consumer-grade headset.
    Ancau DM; Ancau M; Ancau M
    Biomed Phys Eng Express; 2022 Jan; 8(2):. PubMed ID: 35038681
    [No Abstract]   [Full Text] [Related]  

  • 11. A P300-based Brain Computer Interface Using Stereo-electroencephalography Signals.
    Huang W; Yu T; Xiao J; Guo Q; Li Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3062-3066. PubMed ID: 31946534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VAE-WACGAN: An Improved Data Augmentation Method Based on VAEGAN for Intrusion Detection.
    Tian W; Shen Y; Guo N; Yuan J; Yang Y
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BWGAN-GP: An EEG Data Generation Method for Class Imbalance Problem in RSVP Tasks.
    Xu M; Chen Y; Wang Y; Wang D; Liu Z; Zhang L
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():251-263. PubMed ID: 35073267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A P300-Based BCI System Using Stereoelectroencephalography and Its Application in a Brain Mechanistic Study.
    Huang W; Zhang P; Yu T; Gu Z; Guo Q; Li Y
    IEEE Trans Biomed Eng; 2021 Aug; 68(8):2509-2519. PubMed ID: 33373294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the decoding accuracy of EEG signals by the introduction of anchored-STFT and adversarial data augmentation method.
    Ali O; Saif-Ur-Rehman M; Dyck S; Glasmachers T; Iossifidis I; Klaes C
    Sci Rep; 2022 Mar; 12(1):4245. PubMed ID: 35273310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review of Motor Brain-Computer Interfaces Using Intracranial Electroencephalography Based on Surface Electrodes and Depth Electrodes.
    Wu X; Metcalfe B; He S; Tan H; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2408-2431. PubMed ID: 38949928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Approach for EEG Denoising Based on Wasserstein Generative Adversarial Network.
    Dong Y; Tang X; Li Q; Wang Y; Jiang N; Tian L; Zheng Y; Li X; Zhao S; Li G; Fang P
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3524-3534. PubMed ID: 37643110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating Data Cleaning Methods to Improve Performance of Brain-Computer Interfaces Based on Stereo-Electroencephalography.
    Liu S; Li G; Jiang S; Wu X; Hu J; Zhang D; Chen L
    Front Neurosci; 2021; 15():725384. PubMed ID: 34690673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformer fault diagnosis based on adversarial generative networks and deep stacked autoencoder.
    Zhang L; Xu Z; Lu C; Qiao T; Su H; Luo Y
    Heliyon; 2024 May; 10(9):e30670. PubMed ID: 38765093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.