These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 38237174)
21. Deep Convolution Generative Adversarial Network-Based Electroencephalogram Data Augmentation for Post-Stroke Rehabilitation with Motor Imagery. Xu F; Dong G; Li J; Yang Q; Wang L; Zhao Y; Yan Y; Zhao J; Pang S; Guo D; Zhang Y; Leng J Int J Neural Syst; 2022 Sep; 32(9):2250039. PubMed ID: 35881016 [TBL] [Abstract][Full Text] [Related]
22. Using Determinant Point Process in Generative Adversarial Networks for SSVEP Signals Synthesis. Wang J; Wang L; Han J; Mu W; Wang P; Zhang X; Zhan G; Zhang L; Gan Z; Kang X Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083718 [TBL] [Abstract][Full Text] [Related]
23. Universal adversarial perturbations for CNN classifiers in EEG-based BCIs. Liu Z; Meng L; Zhang X; Fang W; Wu D J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34181585 [No Abstract] [Full Text] [Related]
24. Semi-supervised generative and discriminative adversarial learning for motor imagery-based brain-computer interface. Ko W; Jeon E; Yoon JS; Suk HI Sci Rep; 2022 Mar; 12(1):4587. PubMed ID: 35301366 [TBL] [Abstract][Full Text] [Related]
25. Emotion Recognition Based on EEG Using Generative Adversarial Nets and Convolutional Neural Network. Pan B; Zheng W Comput Math Methods Med; 2021; 2021():2520394. PubMed ID: 34671415 [TBL] [Abstract][Full Text] [Related]
26. A Data Augmentation Method for Motor Imagery EEG Signals Based on DCGAN-GP Network. Du X; Ding X; Xi M; Lv Y; Qiu S; Liu Q Brain Sci; 2024 Apr; 14(4):. PubMed ID: 38672024 [TBL] [Abstract][Full Text] [Related]
27. Generative adversarial network based synthetic data training model for lightweight convolutional neural networks. Rather IH; Kumar S Multimed Tools Appl; 2023 May; ():1-23. PubMed ID: 37362646 [TBL] [Abstract][Full Text] [Related]
28. Combining generative adversarial networks and multi-output CNN for motor imagery classification. Xie J; Chen S; Zhang Y; Gao D; Liu T J Neural Eng; 2021 Apr; 18(4):046026. PubMed ID: 33821808 [TBL] [Abstract][Full Text] [Related]
29. On the Vulnerability of CNN Classifiers in EEG-Based BCIs. Zhang X; Wu D IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):814-825. PubMed ID: 30951472 [TBL] [Abstract][Full Text] [Related]
30. Golden subject is everyone: A subject transfer neural network for motor imagery-based brain computer interfaces. Sun B; Wu Z; Hu Y; Li T Neural Netw; 2022 Jul; 151():111-120. PubMed ID: 35405471 [TBL] [Abstract][Full Text] [Related]
31. Efficient Classification of Motor Imagery Electroencephalography Signals Using Deep Learning Methods. Majidov I; Whangbo T Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30978978 [TBL] [Abstract][Full Text] [Related]
32. Data augmentation for deep-learning-based electroencephalography. Lashgari E; Liang D; Maoz U J Neurosci Methods; 2020 Dec; 346():108885. PubMed ID: 32745492 [TBL] [Abstract][Full Text] [Related]
33. Decoding ECoG signal into 3D hand translation using deep learning. Ćliwowski M; Martin M; Souloumiac A; Blanchart P; Aksenova T J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35287119 [No Abstract] [Full Text] [Related]
34. A Survey on Deep Learning-Based Short/Zero-Calibration Approaches for EEG-Based Brain-Computer Interfaces. Ko W; Jeon E; Jeong S; Phyo J; Suk HI Front Hum Neurosci; 2021; 15():643386. PubMed ID: 34140883 [TBL] [Abstract][Full Text] [Related]
35. ERP-WGAN: A data augmentation method for EEG single-trial detection. Zhang R; Zeng Y; Tong L; Shu J; Lu R; Yang K; Li Z; Yan B J Neurosci Methods; 2022 Jul; 376():109621. PubMed ID: 35513171 [TBL] [Abstract][Full Text] [Related]
36. ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data. Ali O; Saif-Ur-Rehman M; Glasmachers T; Iossifidis I; Klaes C Comput Biol Med; 2024 Jan; 168():107649. PubMed ID: 37980798 [TBL] [Abstract][Full Text] [Related]
37. Electroencephalographic Signal Data Augmentation Based on Improved Generative Adversarial Network. Du X; Wang X; Zhu L; Ding X; Lv Y; Qiu S; Liu Q Brain Sci; 2024 Apr; 14(4):. PubMed ID: 38672017 [TBL] [Abstract][Full Text] [Related]
38. Functional brain network identification and fMRI augmentation using a VAE-GAN framework. Qiang N; Gao J; Dong Q; Yue H; Liang H; Liu L; Yu J; Hu J; Zhang S; Ge B; Sun Y; Liu Z; Liu T; Li J; Song H; Zhao S Comput Biol Med; 2023 Oct; 165():107395. PubMed ID: 37669583 [TBL] [Abstract][Full Text] [Related]
39. Enhancing Cross-Subject Motor Imagery Classification in EEG-Based Brain-Computer Interfaces by Using Multi-Branch CNN. Chowdhury RR; Muhammad Y; Adeel U Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765965 [TBL] [Abstract][Full Text] [Related]