BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38237197)

  • 1. Sleep apnea detection from single-lead electrocardiogram signals using effective deep-shallow fusion network.
    Li P; Ma W; Yue H; Lei W; Fan X; Li Y
    Physiol Meas; 2024 Feb; 45(2):. PubMed ID: 38237197
    [No Abstract]   [Full Text] [Related]  

  • 2. RAFNet: Restricted attention fusion network for sleep apnea detection.
    Chen Y; Yue H; Zou R; Lei W; Ma W; Fan X
    Neural Netw; 2023 May; 162():571-580. PubMed ID: 37003136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validity study of a multiscaled fusion network using single-lead electrocardiogram signals for obstructive sleep apnea diagnosis.
    Yue H; Li P; Li Y; Lin Y; Huang B; Sun L; Ma W; Fan X; Wen W; Lei W
    J Clin Sleep Med; 2023 Jun; 19(6):1017-1025. PubMed ID: 36734174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Sleep apnea automatic detection method based on convolutional neural network].
    Gao Q; Shang L; Wu K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Aug; 38(4):678-685. PubMed ID: 34459167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A RR interval based automated apnea detection approach using residual network.
    Wang L; Lin Y; Wang J
    Comput Methods Programs Biomed; 2019 Jul; 176():93-104. PubMed ID: 31200916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of Sleep Apnea from Single-Lead ECG Signal Using a Time Window Artificial Neural Network.
    Wang T; Lu C; Shen G
    Biomed Res Int; 2019; 2019():9768072. PubMed ID: 31950061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiclass classification of obstructive sleep apnea/hypopnea based on a convolutional neural network from a single-lead electrocardiogram.
    Urtnasan E; Park JU; Lee KJ
    Physiol Meas; 2018 Jun; 39(6):065003. PubMed ID: 29794342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FASSNet: fast apnea syndrome screening neural network based on single-lead electrocardiogram for wearable devices.
    Yu Y; Yang Z; You Y; Shan W
    Physiol Meas; 2021 Aug; 42(8):. PubMed ID: 34315149
    [No Abstract]   [Full Text] [Related]  

  • 9. Contribution of Different Subbands of ECG in Sleep Apnea Detection Evaluated Using Filter Bank Decomposition and a Convolutional Neural Network.
    Yeh CY; Chang HY; Hu JY; Lin CC
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SCNN: Scalogram-based convolutional neural network to detect obstructive sleep apnea using single-lead electrocardiogram signals.
    Mashrur FR; Islam MS; Saha DK; Islam SMR; Moni MA
    Comput Biol Med; 2021 Jul; 134():104532. PubMed ID: 34102402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An algorithm for sleep apnea detection from single-lead ECG using Hermite basis functions.
    Sharma H; Sharma KK
    Comput Biol Med; 2016 Oct; 77():116-24. PubMed ID: 27543782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BAFNet: Bottleneck Attention Based Fusion Network for Sleep Apnea Detection.
    Fan X; Chen X; Ma W; Gao W
    IEEE J Biomed Health Inform; 2024 May; 28(5):2473-2484. PubMed ID: 37216250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning Forecasts the Occurrence of Sleep Apnea from Single-Lead ECG.
    Bahrami M; Forouzanfar M
    Cardiovasc Eng Technol; 2022 Dec; 13(6):809-815. PubMed ID: 35301676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Sleep Apnea Severity Based on Deep Learning from a Short-term Normal ECG.
    Urtnasan E; Park JU; Joo EY; Lee KJ
    J Korean Med Sci; 2020 Dec; 35(47):e399. PubMed ID: 33289367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method to detect sleep apnea using residual attention mechanism network from single-lead ECG signal.
    Wang T; Lu C; Sun Y; Fang H; Jiang W; Liu C
    Biomed Tech (Berl); 2022 Oct; 67(5):357-365. PubMed ID: 35920638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep apnea detection from ECG using variational mode decomposition.
    Sharma H; Sharma KK
    Biomed Phys Eng Express; 2020 Jan; 6(1):015026. PubMed ID: 33438614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ECG based apnea detection by multirate processing hybrid of wavelet-empirical decomposition Hjorth features extraction and neural networks.
    Khandelwal S; Salankar N; Mian Qaisar S; Upadhyay J; Pławiak P
    PLoS One; 2023; 18(11):e0293610. PubMed ID: 37917633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spatio-temporal learning-based model for sleep apnea detection using single-lead ECG signals.
    Chen J; Shen M; Ma W; Zheng W
    Front Neurosci; 2022; 16():972581. PubMed ID: 35992920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Sleep Apnea Detection System Based on a One-Dimensional Deep Convolution Neural Network Model Using Single-Lead Electrocardiogram.
    Chang HY; Yeh CY; Lee CT; Lin CC
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32722630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EfficientNet-based machine learning architecture for sleep apnea identification in clinical single-lead ECG signal data sets.
    Liu MH; Chien SY; Wu YL; Sun TH; Huang CS; Hsu KC; Hang LW
    Biomed Eng Online; 2024 Jun; 23(1):57. PubMed ID: 38902671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.