BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38237197)

  • 41. Obstructive sleep apnea prediction from electrocardiogram scalograms and spectrograms using convolutional neural networks.
    Nasifoglu H; Erogul O
    Physiol Meas; 2021 Jun; 42(6):. PubMed ID: 34116519
    [No Abstract]   [Full Text] [Related]  

  • 42. Multi-Feature Automatic Extraction for Detecting Obstructive Sleep Apnea Based on Single-Lead Electrocardiography Signals.
    Zhou Y; Kang K
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400317
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sleep apnea classification using ECG-signal wavelet-PCA features.
    Rachim VP; Li G; Chung WY
    Biomed Mater Eng; 2014; 24(6):2875-82. PubMed ID: 25226993
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automated scoring of obstructive sleep apnea and hypopnea events using short-term electrocardiogram recordings.
    Khandoker AH; Gubbi J; Palaniswami M
    IEEE Trans Inf Technol Biomed; 2009 Nov; 13(6):1057-67. PubMed ID: 19775974
    [TBL] [Abstract][Full Text] [Related]  

  • 45. ECG-Derived Heart Rate Variability Interpolation and 1-D Convolutional Neural Networks for Detecting Sleep Apnea.
    Sharan RV; Berkovsky S; Xiong H; Coiera E
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():637-640. PubMed ID: 33018068
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Obstructive sleep apnea detection using discrete wavelet transform-based statistical features.
    Rajesh KNVPS; Dhuli R; Kumar TS
    Comput Biol Med; 2021 Mar; 130():104199. PubMed ID: 33422885
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automated ECG classification using a non-local convolutional block attention module.
    Wang J; Qiao X; Liu C; Wang X; Liu Y; Yao L; Zhang H
    Comput Methods Programs Biomed; 2021 May; 203():106006. PubMed ID: 33735660
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Robustness of convolutional neural networks to physiological electrocardiogram noise.
    Venton J; Harris PM; Sundar A; Smith NAS; Aston PJ
    Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2212):20200262. PubMed ID: 34689617
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Comprehensive Study on a Deep-Learning-Based Electrocardiography Analysis for Estimating the Apnea-Hypopnea Index.
    Kim S; Choi HS; Kim D; Kim M; Lee SY; Kim JK; Kim Y; Lee WH
    Diagnostics (Basel); 2024 May; 14(11):. PubMed ID: 38893660
    [TBL] [Abstract][Full Text] [Related]  

  • 50. HA-ResNet: Residual Neural Network With Hidden Attention for ECG Arrhythmia Detection Using Two-Dimensional Signal.
    Guan Y; An Y; Xu J; Liu N; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3389-3398. PubMed ID: 35969555
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deep Multi-Scale Fusion Neural Network for Multi-Class Arrhythmia Detection.
    Wang R; Fan J; Li Y
    IEEE J Biomed Health Inform; 2020 Sep; 24(9):2461-2472. PubMed ID: 32287022
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differentiating obstructive from central and complex sleep apnea using an automated electrocardiogram-based method.
    Thomas RJ; Mietus JE; Peng CK; Gilmartin G; Daly RW; Goldberger AL; Gottlieb DJ
    Sleep; 2007 Dec; 30(12):1756-69. PubMed ID: 18246985
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ECG quality assessment based on hand-crafted statistics and deep-learned S-transform spectrogram features.
    Liu G; Han X; Tian L; Zhou W; Liu H
    Comput Methods Programs Biomed; 2021 Sep; 208():106269. PubMed ID: 34298474
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multi-information fusion neural networks for arrhythmia automatic detection.
    Chen A; Wang F; Liu W; Chang S; Wang H; He J; Huang Q
    Comput Methods Programs Biomed; 2020 Sep; 193():105479. PubMed ID: 32388066
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Convolutional transformer-driven robust electrocardiogram signal denoising framework with adaptive parametric ReLU.
    Wang J; Pei S; Yang Y; Wang H
    Math Biosci Eng; 2024 Feb; 21(3):4286-4308. PubMed ID: 38549328
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Accurate detection of atrial fibrillation from 12-lead ECG using deep neural network.
    Cai W; Chen Y; Guo J; Han B; Shi Y; Ji L; Wang J; Zhang G; Luo J
    Comput Biol Med; 2020 Jan; 116():103378. PubMed ID: 31778896
    [TBL] [Abstract][Full Text] [Related]  

  • 57. End-to-End Deep Learning Fusion of Fingerprint and Electrocardiogram Signals for Presentation Attack Detection.
    M Jomaa R; Mathkour H; Bazi Y; Islam MS
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32272813
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ECG recordings.
    Rubin J; Parvaneh S; Rahman A; Conroy B; Babaeizadeh S
    J Electrocardiol; 2018; 51(6S):S18-S21. PubMed ID: 30122456
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Parallel Cross Convolutional Recurrent Neural Network for Automatic Imbalanced ECG Arrhythmia Detection with Continuous Wavelet Transform.
    Toma TI; Choi S
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236496
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automated Detection of Obstructive Sleep Apnea Events from a Single-Lead Electrocardiogram Using a Convolutional Neural Network.
    Urtnasan E; Park JU; Joo EY; Lee KJ
    J Med Syst; 2018 Apr; 42(6):104. PubMed ID: 29687192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.