BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38237392)

  • 1. Druggable targets of protein tyrosine phosphatase Family, viz. PTP1B, SHP2, Cdc25, and LMW-PTP: Current scenario on medicinal Attributes, and SAR insights.
    Bhavana ; Kohal R; Kumari P; Das Gupta G; Kumar Verma S
    Bioorg Chem; 2024 Mar; 144():107121. PubMed ID: 38237392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of the small protein tyrosine phosphatases TC-PTP and PTP1B in signal transduction and diseases: from diabetes, obesity to cell cycle, and cancer.
    Dubé N; Tremblay ML
    Biochim Biophys Acta; 2005 Dec; 1754(1-2):108-17. PubMed ID: 16198645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting PTPs with small molecule inhibitors in cancer treatment.
    Jiang ZX; Zhang ZY
    Cancer Metastasis Rev; 2008 Jun; 27(2):263-72. PubMed ID: 18259840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, biological activity and structure-activity relationships of new benzoic acid-based protein tyrosine phosphatase inhibitors endowed with insulinomimetic effects in mouse C2C12 skeletal muscle cells.
    Ottanà R; Maccari R; Mortier J; Caselli A; Amuso S; Camici G; Rotondo A; Wolber G; Paoli P
    Eur J Med Chem; 2014 Jan; 71():112-27. PubMed ID: 24287560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small molecule tools for functional interrogation of protein tyrosine phosphatases.
    He R; Zeng LF; He Y; Zhang S; Zhang ZY
    FEBS J; 2013 Jan; 280(2):731-50. PubMed ID: 22816879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein tyrosine phosphatases as potential therapeutic targets.
    He RJ; Yu ZH; Zhang RY; Zhang ZY
    Acta Pharmacol Sin; 2014 Oct; 35(10):1227-46. PubMed ID: 25220640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design of allosteric-inhibition sites in classical protein tyrosine phosphatases.
    Chio CM; Yu X; Bishop AC
    Bioorg Med Chem; 2015 Jun; 23(12):2828-38. PubMed ID: 25828055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low M(r) protein tyrosine phosphatase inhibits growth and migration of vascular smooth muscle cells induced by platelet-derived growth factor.
    Shimizu H; Shiota M; Yamada N; Miyazaki K; Ishida N; Kim S; Miyazaki H
    Biochem Biophys Res Commun; 2001 Nov; 289(2):602-7. PubMed ID: 11716518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An overview of the protein tyrosine phosphatase superfamily.
    Wang WQ; Sun JP; Zhang ZY
    Curr Top Med Chem; 2003; 3(7):739-48. PubMed ID: 12678841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drugging the Undruggable: Therapeutic Potential of Targeting Protein Tyrosine Phosphatases.
    Zhang ZY
    Acc Chem Res; 2017 Jan; 50(1):122-129. PubMed ID: 27977138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic studies on protein tyrosine phosphatases.
    Zhang ZY
    Prog Nucleic Acid Res Mol Biol; 2003; 73():171-220. PubMed ID: 12882518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein tyrosine phosphatases: the quest for negative regulators of insulin action.
    Asante-Appiah E; Kennedy BP
    Am J Physiol Endocrinol Metab; 2003 Apr; 284(4):E663-70. PubMed ID: 12626322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of a novel shp2 protein tyrosine phosphatase inhibitor.
    Chen L; Sung SS; Yip ML; Lawrence HR; Ren Y; Guida WC; Sebti SM; Lawrence NJ; Wu J
    Mol Pharmacol; 2006 Aug; 70(2):562-70. PubMed ID: 16717135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New Paradigm for KIM-PTP Drug Discovery: Identification of Allosteric Sites with Potential for Selective Inhibition Using Virtual Screening and LEI Analysis.
    Adams J; Thornton BP; Tabernero L
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein tyrosine phosphatases as drug targets: PTP1B and beyond.
    Hooft van Huijsduijnen R; Wälchli S; Ibberson M; Harrenga A
    Expert Opin Ther Targets; 2002 Dec; 6(6):637-47. PubMed ID: 12472377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Analysis of Protein Tyrosine Phosphatases Regulating Microglial Activation.
    Song GJ; Kim J; Kim JH; Song S; Park H; Zhang ZY; Suk K
    Exp Neurobiol; 2016 Oct; 25(5):252-261. PubMed ID: 27790059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGF-β receptor tyrosine kinase signaling.
    Dagnell M; Frijhoff J; Pader I; Augsten M; Boivin B; Xu J; Mandal PK; Tonks NK; Hellberg C; Conrad M; Arnér ES; Östman A
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13398-403. PubMed ID: 23901112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Protein Tyrosine Phosphatase in Regulation of Cell Signaling Cascades Affecting Tumor Cell Growth: A Future Perspective as Anti-Cancer Drug Target.
    Kambaru A; Chaudhary N
    Curr Pharm Biotechnol; 2022; 23(7):920-931. PubMed ID: 34375185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MAPK-specific tyrosine phosphatases: new targets for drug discovery?
    Barr AJ; Knapp S
    Trends Pharmacol Sci; 2006 Oct; 27(10):525-30. PubMed ID: 16919785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential impact of cold and hot tea extracts on tyrosine phosphatases regulating insulin receptor activity: a focus on PTP1B and LMW-PTP.
    Genovese M; Luti S; Pardella E; Vivoli-Vega M; Pazzagli L; Parri M; Caselli A; Cirri P; Paoli P
    Eur J Nutr; 2022 Jun; 61(4):1905-1918. PubMed ID: 35066640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.