BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38237398)

  • 41. Subharmonic response of encapsulated microbubbles: conditions for existence and amplification.
    Kimmel E; Krasovitski B; Hoogi A; Razansky D; Adam D
    Ultrasound Med Biol; 2007 Nov; 33(11):1767-76. PubMed ID: 17720301
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nonlinear emission from individual bound microbubbles at high frequencies.
    Sprague MR; Chérin E; Goertz DE; Foster FS
    Ultrasound Med Biol; 2010 Feb; 36(2):313-24. PubMed ID: 20018429
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of shell properties on high-frequency ultrasound imaging and drug delivery using polymer-shelled microbubbles.
    Chitnis PV; Koppolu S; Mamou J; Chlon C; Ketterling JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):53-64. PubMed ID: 23287913
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultrasound assessment of translation of microbubbles driven by acoustic radiation force in a channel filled with stationary fluid.
    Yoshida K; Saito K; Omura M; Tamura K; Yamaguchi T
    J Acoust Soc Am; 2019 Oct; 146(4):2335. PubMed ID: 31672000
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigating the efficacy of subharmonic aided pressure estimation for portal vein pressures and portal hypertension monitoring.
    Dave JK; Halldorsdottir VG; Eisenbrey JR; Merton DA; Liu JB; Zhou JH; Wang HK; Park S; Dianis S; Chalek CL; Lin F; Thomenius KE; Brown DB; Forsberg F
    Ultrasound Med Biol; 2012 Oct; 38(10):1784-98. PubMed ID: 22920550
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Non-Invasive Intra-cardiac Pressure Measurements Using Subharmonic-Aided Pressure Estimation: Proof of Concept in Humans.
    Dave JK; Kulkarni SV; Pangaonkar PP; Stanczak M; McDonald ME; Cohen IS; Mehrotra P; Savage MP; Walinsky P; Ruggiero NJ; Fischman DL; Ogilby D; VanWhy C; Lombardi M; Forsberg F
    Ultrasound Med Biol; 2017 Nov; 43(11):2718-2724. PubMed ID: 28807449
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Subharmonic imaging with microbubble contrast agents: initial results.
    Shi WT; Forsberg F; Hall AL; Chiao RY; Liu JB; Miller S; Thomenius KE; Wheatley MA; Goldberg BB
    Ultrason Imaging; 1999 Apr; 21(2):79-94. PubMed ID: 10485563
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On Factors Affecting Subharmonic-aided Pressure Estimation (SHAPE).
    Gupta I; Eisenbrey JR; Machado P; Stanczak M; Wallace K; Forsberg F
    Ultrason Imaging; 2019 Jan; 41(1):35-48. PubMed ID: 30417745
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of ultrasound pulse parameters on cavitation properties of flowing microbubbles under physiologically relevant conditions.
    Cheng M; Li F; Han T; Yu ACH; Qin P
    Ultrason Sonochem; 2019 Apr; 52():512-521. PubMed ID: 30642801
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improvement of Detection Sensitivity of Microbubbles as Sensors to Detect Ambient Pressure.
    Li F; Li D; Yan F
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30469461
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impact of Filling Gas on Subharmonic Emissions of Phospholipid Ultrasound Contrast Agents.
    Kanbar E; Fouan D; Sennoga CA; Doinikov AA; Bouakaz A
    Ultrasound Med Biol; 2017 May; 43(5):1004-1015. PubMed ID: 28214036
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vitro characterization of the subharmonic ultrasound signal from Definity microbubbles at high frequencies.
    Cheung K; Couture O; Bevan PD; Cherin E; Williams R; Burns PN; Foster FS
    Phys Med Biol; 2008 Mar; 53(5):1209-23. PubMed ID: 18296758
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Subharmonic scattering of phospholipid-shell microbubbles at low acoustic pressure amplitudes.
    Frinking PJ; Brochot J; Arditi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1762-71. PubMed ID: 20704062
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Fiber Bragg Grating-Based Sensor for Passive Cavitation Detection at MHz Frequencies.
    Jha CK; Jajoria K; Chakraborty AL; Shekhar H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 May; 69(5):1682-1690. PubMed ID: 35320100
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The influence of acoustic transmit parameters on the destruction of contrast microbubbles in vitro.
    Shi WT; Forsberg F; Vaidyanathan P; Tornes A; Østensen J; Goldberg BB
    Phys Med Biol; 2006 Aug; 51(16):4031-45. PubMed ID: 16885622
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Perfusion estimation using contrast-enhanced 3-dimensional subharmonic ultrasound imaging: an in vivo study.
    Sridharan A; Eisenbrey JR; Liu JB; Machado P; Halldorsdottir VG; Dave JK; Zhao H; He Y; Park S; Dianis S; Wallace K; Thomenius KE; Forsberg F
    Invest Radiol; 2013 Sep; 48(9):654-60. PubMed ID: 23695085
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Subharmonic imaging of contrast agents.
    Forsberg F; Shi WT; Goldberg BB
    Ultrasonics; 2000 Mar; 38(1-8):93-8. PubMed ID: 10829636
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling subharmonic response from contrast microbubbles as a function of ambient static pressure.
    Katiyar A; Sarkar K; Forsberg F
    J Acoust Soc Am; 2011 Apr; 129(4):2325-35. PubMed ID: 21476688
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3-D Ultrafast Ultrasound Imaging of Microbubbles Trapped Using an Acoustic Vortex.
    Lo WC; Huang YL; Fan CH; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3507-3514. PubMed ID: 34228623
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stable and transient subharmonic emissions from isolated contrast agent microbubbles.
    Biagi E; Breschi L; Vannacci E; Masotti L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):480-97. PubMed ID: 17375818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.