These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38237574)

  • 1. Comparison of Concurrent and Asynchronous Running Kinematics and Kinetics From Marker-Based and Markerless Motion Capture Under Varying Clothing Conditions.
    Kanko RM; Outerleys JB; Laende EK; Selbie WS; Deluzio KJ
    J Appl Biomech; 2024 Apr; 40(2):129-137. PubMed ID: 38237574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements.
    Song K; Hullfish TJ; Scattone Silva R; Silbernagel KG; Baxter JR
    J Biomech; 2023 Aug; 157():111751. PubMed ID: 37552921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences between lower extremity joint running kinetics captured by marker-based and markerless systems were speed dependent.
    Tang H; Munkasy B; Li L
    J Sport Health Sci; 2024 Jul; 13(4):569-578. PubMed ID: 38218372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concurrent assessment of gait kinematics using marker-based and markerless motion capture.
    Kanko RM; Laende EK; Davis EM; Selbie WS; Deluzio KJ
    J Biomech; 2021 Oct; 127():110665. PubMed ID: 34380101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clothing condition does not affect meaningful clinical interpretation in markerless motion capture.
    Keller VT; Outerleys JB; Kanko RM; Laende EK; Deluzio KJ
    J Biomech; 2022 Aug; 141():111182. PubMed ID: 35749889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of OpenCap: A low-cost markerless motion capture system for lower-extremity kinematics during return-to-sport tasks.
    Turner JA; Chaaban CR; Padua DA
    J Biomech; 2024 Jun; 171():112200. PubMed ID: 38905926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The accuracy of markerless motion capture combined with computer vision techniques for measuring running kinematics.
    Van Hooren B; Pecasse N; Meijer K; Essers JMN
    Scand J Med Sci Sports; 2023 Jun; 33(6):966-978. PubMed ID: 36680411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of three-dimensional kinematics between markerless and marker-based motion capture in overground gait.
    Ripic Z; Nienhuis M; Signorile JF; Best TM; Jacobs KA; Eltoukhy M
    J Biomech; 2023 Oct; 159():111793. PubMed ID: 37725886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examination of 2D frontal and sagittal markerless motion capture: Implications for markerless applications.
    Wade L; Needham L; Evans M; McGuigan P; Colyer S; Cosker D; Bilzon J
    PLoS One; 2023; 18(11):e0293917. PubMed ID: 37943887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics.
    Wade L; Needham L; McGuigan P; Bilzon J
    PeerJ; 2022; 10():e12995. PubMed ID: 35237469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repeatability and minimal detectable change including clothing effects for smartphone-based 3D markerless motion capture.
    Horsak B; Kainz H; Dumphart B
    J Biomech; 2024 Oct; 175():112281. PubMed ID: 39163799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concurrent validity of lower extremity kinematics and jump characteristics captured in pre-school children by a markerless 3D motion capture system.
    Harsted S; Holsgaard-Larsen A; Hestbæk L; Boyle E; Lauridsen HH
    Chiropr Man Therap; 2019; 27():39. PubMed ID: 31417672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system.
    Schmitz A; Ye M; Shapiro R; Yang R; Noehren B
    J Biomech; 2014 Jan; 47(2):587-91. PubMed ID: 24315287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements.
    Song K; Hullfish TJ; Silva RS; Silbernagel KG; Baxter JR
    bioRxiv; 2023 Feb; ():. PubMed ID: 36865211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics-Part 2: Accuracy.
    Pagnon D; Domalain M; Reveret L
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agreement between a markerless and a marker-based motion capture systems for balance related quantities.
    Chaumeil A; Lahkar BK; Dumas R; Muller A; Robert T
    J Biomech; 2024 Mar; 165():112018. PubMed ID: 38412623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a Commercially Available Markerless Motion-Capture System for Trunk and Lower Extremity Kinematics During a Jump-Landing Assessment.
    Mauntel TC; Cameron KL; Pietrosimone B; Marshall SW; Hackney AC; Padua DA
    J Athl Train; 2021 Feb; 56(2):177-190. PubMed ID: 33480993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of kinematics between Theia markerless and conventional marker-based gait analysis in clinical patients.
    Wren TAL; Isakov P; Rethlefsen SA
    Gait Posture; 2023 Jul; 104():9-14. PubMed ID: 37285635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inter-session repeatability of markerless motion capture gait kinematics.
    Kanko RM; Laende E; Selbie WS; Deluzio KJ
    J Biomech; 2021 May; 121():110422. PubMed ID: 33873117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of kinematics and joint moments calculations for lower limbs during gait using markerless and marker-based motion capture.
    Huang T; Ruan M; Huang S; Fan L; Wu X
    Front Bioeng Biotechnol; 2024; 12():1280363. PubMed ID: 38532880
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.