These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 38238207)
1. Separator designs for aqueous zinc-ion batteries. Li B; Zeng Y; Zhang W; Lu B; Yang Q; Zhou J; He Z Sci Bull (Beijing); 2024 Mar; 69(5):688-703. PubMed ID: 38238207 [TBL] [Abstract][Full Text] [Related]
2. A bio-based functional separator enables dendrite-free anodes in aqueous zinc-ion batteries. Zhang H; Li J; Ren H; Wang J; Gong Y; Wang B; Wang D; Liu H; Dou S iScience; 2024 Jul; 27(7):110237. PubMed ID: 38993664 [TBL] [Abstract][Full Text] [Related]
3. Toward Long-Life Aqueous Zinc Ion Batteries by Constructing Stable Zinc Anodes. Liu Y; Liu Y; Wu X Chem Rec; 2022 Oct; 22(10):e202200088. PubMed ID: 35652535 [TBL] [Abstract][Full Text] [Related]
4. Polyaniline functionalized separator as synergistic medium for aqueous zinc-ion batteries. Zhao N; Zhang Y; Zhang Z; Han C; Liang Y; Li J; Wang X; Dai L; Wang L; He Z J Colloid Interface Sci; 2023 Jul; 642():421-429. PubMed ID: 37023514 [TBL] [Abstract][Full Text] [Related]
5. Recent advances in cellulosic materials for aqueous zinc-ion batteries: An overview. Cheng L; Huang Y; Yin S; Chen M; Liu Y; Zhang Y; Seidi F; Lin Z; Xiao H Carbohydr Polym; 2023 Sep; 316():121075. PubMed ID: 37321751 [TBL] [Abstract][Full Text] [Related]
6. Design and Conformation of Separators for High-performance Aqueous Zinc-Ion Batteries. Niu B; Luo D; He X; Wang X Chemistry; 2024 Nov; 30(65):e202402689. PubMed ID: 39103290 [TBL] [Abstract][Full Text] [Related]
7. Separator Design Strategies to Advance Rechargeable Aqueous Zinc Ion Batteries. Du H; Yi Z; Li H; Lv W; Hu N; Zhang X; Chen W; Wei Z; Shen F; He H Chemistry; 2024 Feb; 30(10):e202303461. PubMed ID: 38050714 [TBL] [Abstract][Full Text] [Related]
8. Synergistically regulating the separator pore structure and surface property toward dendrite-free and high-performance aqueous zinc-ion batteries. Zhang Y; Yang S; Zhu YJ; Li D; Cheng L; Li H; Wang Z J Colloid Interface Sci; 2024 Feb; 656():566-576. PubMed ID: 38011775 [TBL] [Abstract][Full Text] [Related]
9. A Functional Janus Ag Nanowires/Bacterial Cellulose Separator for High-Performance Dendrite-Free Zinc Anode Under Harsh Conditions. Zheng Z; Guo S; Yan M; Luo Y; Cao F Adv Mater; 2023 Nov; 35(47):e2304667. PubMed ID: 37730093 [TBL] [Abstract][Full Text] [Related]
10. Comparative Review on the Aqueous Zinc-Ion Batteries (AZIBs) and Flexible Zinc-Ion Batteries (FZIBs). Al-Amin M; Islam S; Shibly SUA; Iffat S Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432283 [TBL] [Abstract][Full Text] [Related]
11. Metal-Organic Frameworks Functionalized Separators for Robust Aqueous Zinc-Ion Batteries. Song Y; Ruan P; Mao C; Chang Y; Wang L; Dai L; Zhou P; Lu B; Zhou J; He Z Nanomicro Lett; 2022 Nov; 14(1):218. PubMed ID: 36352159 [TBL] [Abstract][Full Text] [Related]
12. A Feasible Strategy for High-Performance Aqueous Zinc-Ion Batteries: Introducing Conducting Polymer. Zhao Y; Wei M; Zhang H; Zhang H; Zhu Y; Ma H; Xue M ChemSusChem; 2024 Aug; ():e202401354. PubMed ID: 39136174 [TBL] [Abstract][Full Text] [Related]
13. Enhancing aqueous zinc-ion energy storage performance with ion-mediating carbon quantum dots-modified separators regulating zinc deposition behavior. Wang T; Liu P; Chen X; Guo Y; He C; Guo J; Liu W; Gao S; Lv Y; Liu K J Colloid Interface Sci; 2025 Jan; 678(Pt A):301-310. PubMed ID: 39208758 [TBL] [Abstract][Full Text] [Related]
14. Robust Zinc Anode Enabled by Sulfonate-Rich MOF-Modified Separator. Chen R; Zhang G; Zhou H; Li J; Li J; Chung LH; Hu X; He J Small; 2024 Feb; 20(8):e2305687. PubMed ID: 37840433 [TBL] [Abstract][Full Text] [Related]
15. Advances of Zn Metal-Free "Rocking-Chair"-Type Zinc Ion Batteries: Recent Developments and Future Perspectives. Bai Y; Zhang H; Liang W; Zhu C; Yan L; Li C Small; 2024 Feb; 20(8):e2306111. PubMed ID: 37821411 [TBL] [Abstract][Full Text] [Related]
16. Metal-Organic Framework-Based Materials in Aqueous Zinc-Ion Batteries. Wu F; Wu B; Mu Y; Zhou B; Zhang G; Zeng L Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047010 [TBL] [Abstract][Full Text] [Related]
17. Gradient Electrolyte Strategy Achieving Long-Life Zinc Anodes. Lu H; Zhang D; Jin Q; Zhang Z; Lyu N; Zhu Z; Duan C; Qin Y; Jin Y Adv Mater; 2023 Jun; 35(26):e2300620. PubMed ID: 36946149 [TBL] [Abstract][Full Text] [Related]
18. Polysaccharide hydrogel electrolytes with robust interfacial contact to electrodes for quasi-solid state flexible aqueous zinc ion batteries with efficient suppressing of dendrite growth. Deng Y; Wu Y; Wang L; Zhang K; Wang Y; Yan L J Colloid Interface Sci; 2023 Mar; 633():142-154. PubMed ID: 36436347 [TBL] [Abstract][Full Text] [Related]
19. Dilemma of Low-Cost Filter Paper as Separator: Toughen Its Wet Strength for Robust Aqueous Zinc-Ion Batteries. Li L; Sun M; Hao B; Chen W; Zhu C; Zhang L; Shen X; Zhou X; Zhou J; Yan C; Liu X; Qian T J Phys Chem Lett; 2024 Jan; 15(2):380-390. PubMed ID: 38175719 [TBL] [Abstract][Full Text] [Related]
20. Advancing Anode Performance in Aqueous Zinc-Ion Batteries: A Review of Metal-Organic Framework-Based Strategies. Li J; Wang B; Wang S; Li W; Chen D ChemSusChem; 2024 Aug; ():e202401217. PubMed ID: 39087441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]