These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 38238207)
21. Recent Advances on Stretchable Aqueous Zinc-Ion Batteries for Wearable Electronics. Wang Z; Zhu J Small; 2024 Mar; 20(12):e2311012. PubMed ID: 38334244 [TBL] [Abstract][Full Text] [Related]
22. A Molecular-Sieve Electrolyte Membrane enables Separator-Free Zinc Batteries with Ultralong Cycle Life. Zhu J; Bie Z; Cai X; Jiao Z; Wang Z; Tao J; Song W; Fan HJ Adv Mater; 2022 Oct; 34(43):e2207209. PubMed ID: 36065756 [TBL] [Abstract][Full Text] [Related]
23. Industrial Waste Derived Separators for Zn-Ion Batteries Achieve Homogeneous Zn(002) Deposition Through Low Chemical Affinity Effects. Yang C; Woottapanit P; Yue Y; Geng S; Cao J; Zhang X; He G; Qin J Small; 2024 Jun; 20(26):e2311203. PubMed ID: 38233210 [TBL] [Abstract][Full Text] [Related]
24. Reliable lateral Zn deposition along (002) plane by oxidized PAN separator for zinc-ion batteries. Luo L; Wen Z; Hong G; Chen S RSC Adv; 2023 Nov; 13(50):34947-34957. PubMed ID: 38046635 [TBL] [Abstract][Full Text] [Related]
25. Recent advances in electrospinning nanofiber materials for aqueous zinc ion batteries. Yang S; Zhao S; Chen S Chem Sci; 2023 Nov; 14(46):13346-13366. PubMed ID: 38033908 [TBL] [Abstract][Full Text] [Related]
26. Silk Fibroin Coating Enables Dendrite-free Zinc Anode for Long-Life Aqueous Zinc-Ion Batteries. Lu J; Yang J; Zhang Z; Wang C; Xu J; Wang T ChemSusChem; 2022 Aug; 15(15):e202200656. PubMed ID: 35587611 [TBL] [Abstract][Full Text] [Related]
27. Dendrite-Free Engineering toward Efficient Zinc Storage: Recent Progress and Future Perspectives. Miao L; Zhang J; Lv Y; Gan L; Liu M Chemistry; 2023 Apr; 29(20):e202203973. PubMed ID: 36597275 [TBL] [Abstract][Full Text] [Related]
28. Performance improvement of aqueous zinc batteries by zinc oxide and Ketjen black co-modified glass fiber separators. Lin G; Zhou X; Liu L; Li H; Huang D; Liu J; Li J; Wei Z RSC Adv; 2023 Feb; 13(10):6453-6458. PubMed ID: 36845594 [TBL] [Abstract][Full Text] [Related]
29. Suppressing Dendrite Growth and Side Reactions via Mechanically Robust Laponite-Based Electrolyte Membranes for Ultrastable Aqueous Zinc-Ion Batteries. Tian S; Hwang T; Tian Y; Zhou Y; Zhou L; Milazzo T; Moon S; Malakpour Estalaki S; Wu S; Jian R; Balkus K; Luo T; Cho K; Xiong G ACS Nano; 2023 Aug; 17(15):14930-14942. PubMed ID: 37505191 [TBL] [Abstract][Full Text] [Related]
30. A Nature-Inspired Separator with Water-Confined and Kinetics-Boosted Effects for Sustainable and High-Utilization Zn Metal Batteries. Qin H; Chen W; Kuang W; Hu N; Zhang X; Weng H; Tang H; Huang D; Xu J; He H Small; 2023 May; 19(20):e2300130. PubMed ID: 36794300 [TBL] [Abstract][Full Text] [Related]
31. Improving the Performance of Aqueous Zinc-ion Batteries by Inhibiting Zinc Dendrite Growth: Recent Progress. Ho VC; Lim H; Kim MJ; Mun J Chem Asian J; 2022 Jul; 17(14):e202200289. PubMed ID: 35546083 [TBL] [Abstract][Full Text] [Related]
32. Advances of Nanomaterials for High-Efficiency Zn Metal Anodes in Aqueous Zinc-Ion Batteries. Liu F; Zhang Y; Liu H; Zhang S; Yang J; Li Z; Huang Y; Ren Y ACS Nano; 2024 Jun; 18(25):16063-16090. PubMed ID: 38868937 [TBL] [Abstract][Full Text] [Related]
33. Mediating Triple Ions Migration Behavior via a Fluorinated Separator Interface toward Highly Reversible Aqueous Zn Batteries. Shen F; Du H; Qin H; Wei Z; Kuang W; Hu N; Lv W; Yi Z; Huang D; Chen Z; He H Small; 2024 Jan; 20(1):e2305119. PubMed ID: 37653595 [TBL] [Abstract][Full Text] [Related]
34. Construction of Selective Ion Transport Polymer at Anode-Electrolyte Interface for Stable Aqueous Zinc-Ion Batteries. Sun X; Lv X; Zhang M; Shi K; Li Z; Pan X; Lian T; Chen R; Wu F; Li L ACS Nano; 2024 Mar; 18(11):8452-8462. PubMed ID: 38427806 [TBL] [Abstract][Full Text] [Related]
35. Versatile MXenes for Aqueous Zinc Batteries. Liu H; Xin Z; Cao B; Zhang B; Fan HJ; Guo S Adv Sci (Weinh); 2024 Feb; 11(8):e2305806. PubMed ID: 37985557 [TBL] [Abstract][Full Text] [Related]
36. Progress and Prospect of Zn Anode Modification in Aqueous Zinc-Ion Batteries: Experimental and Theoretical Aspects. Feng K; Wang D; Yu Y Molecules; 2023 Mar; 28(6):. PubMed ID: 36985693 [TBL] [Abstract][Full Text] [Related]
37. Multifunctional Electrolyte Additive Enables Highly Reversible Anodes and Enhanced Stable Cathodes for Aqueous Zinc-Ion Batteries. Gong X; Yang H; Wang J; Wang G; Tian J ACS Appl Mater Interfaces; 2023 Jan; 15(3):4152-4165. PubMed ID: 36629259 [TBL] [Abstract][Full Text] [Related]
38. Recent Progress in Aqueous Zinc-Ion Batteries: From FundamentalScience to Structure Design. Wang T; Zhang Y; You J; Hu F Chem Rec; 2023 May; 23(5):e202200309. PubMed ID: 36974578 [TBL] [Abstract][Full Text] [Related]
39. Molecularly modulating solvation structure and electrode interface enables dendrite-free zinc-ion batteries. Li X; Xiang J; Liu H; Wang P; Chen C; Gao T; Guo Y; Xiao D; Jin Z J Colloid Interface Sci; 2024 Jan; 654(Pt A):476-485. PubMed ID: 37862799 [TBL] [Abstract][Full Text] [Related]
40. Revitalizing zinc-ion batteries with advanced zinc anode design. Chen S; Wang H; Zhu M; You F; Lin W; Chan D; Lin W; Li P; Tang Y; Zhang Y Nanoscale Horiz; 2022 Dec; 8(1):29-54. PubMed ID: 36268641 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]