BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38238347)

  • 1. Exploring localized ENZ resonances and their role in superscattering, wideband invisibility, and tunable scattering.
    Serebryannikov AE; Ozbay E
    Sci Rep; 2024 Jan; 14(1):1580. PubMed ID: 38238347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Observation of Superscattering.
    Qian C; Lin X; Yang Y; Xiong X; Wang H; Li E; Kaminer I; Zhang B; Chen H
    Phys Rev Lett; 2019 Feb; 122(6):063901. PubMed ID: 30822094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superscattering of electromagnetic waves from subwavelength dielectric structures.
    Beneck RJ; Kang L; Jenkins RP; Campbell SD; Werner DH
    Opt Express; 2024 May; 32(11):19410-19423. PubMed ID: 38859076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Fano-like interference to superscattering with a single metallic nanodisk.
    Wan W; Zheng W; Chen Y; Liu Z
    Nanoscale; 2014 Aug; 6(15):9093-102. PubMed ID: 24975582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Thin Films of Phase-Change Material for Active Tuning of Terahertz Waves Scattering on Dielectric Cylinders.
    Cakmak AO; Colak E; Serebryannikov AE
    Materials (Basel); 2024 Jan; 17(1):. PubMed ID: 38204112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Property Variation in Wavelength-thick Epsilon-Near-Zero ITO Metafilm for Near IR Photonic Devices.
    Ni JH; Sarney WL; Leff AC; Cahill JP; Zhou W
    Sci Rep; 2020 Jan; 10(1):713. PubMed ID: 31959843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Semi-Classical View on Epsilon-Near-Zero Resonant Tunneling Modes in Metal/Insulator/Metal Nanocavities.
    Caligiuri V; Palei M; Biffi G; Artyukhin S; Krahne R
    Nano Lett; 2019 May; 19(5):3151-3160. PubMed ID: 30920844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superscattering from cylindrical hyperbolic metamaterials in the visible region.
    Kumar R; Kajikawa K
    Opt Express; 2020 Jan; 28(2):1507-1517. PubMed ID: 32121859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering multimode resonances for tunable multifrequency superscattering.
    Jie Liu Y; Yuan Dong H; Dong ZG; Wang J
    Opt Express; 2022 Jan; 30(2):1219-1227. PubMed ID: 35209286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers.
    Park J; Kang JH; Liu X; Brongersma ML
    Sci Rep; 2015 Nov; 5():15754. PubMed ID: 26549615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superscattering emerging from the physics of bound states in the continuum.
    CanĂ³s Valero A; Shamkhi HK; Kupriianov AS; Weiss T; Pavlov AA; Redka D; Bobrovs V; Kivshar Y; Shalin AS
    Nat Commun; 2023 Aug; 14(1):4689. PubMed ID: 37542069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring the Thickness-Dependent Optical Properties of Conducting Nitrides and Oxides for Epsilon-Near-Zero-Enhanced Photonic Applications.
    Saha S; Ozlu MG; Chowdhury SN; Diroll BT; Schaller RD; Kildishev A; Boltasseva A; Shalaev VM
    Adv Mater; 2023 Aug; 35(34):e2109546. PubMed ID: 35917390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superresolution stimulated Raman scattering microscopy using 2-ENZ nano-composites.
    Kharintsev SS; Kharitonov AV; Alekseev AM; Kazarian SG
    Nanoscale; 2019 Apr; 11(16):7710-7719. PubMed ID: 30946390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polaritonic Hybrid-Epsilon-near-Zero Modes: Beating the Plasmonic Confinement vs Propagation-Length Trade-Off with Doped Cadmium Oxide Bilayers.
    Runnerstrom EL; Kelley KP; Folland TG; Nolen JR; Engheta N; Caldwell JD; Maria JP
    Nano Lett; 2019 Feb; 19(2):948-957. PubMed ID: 30582700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband perfect infrared absorption by tuning epsilon-near-zero and epsilon-near-pole resonances of multilayer ITO nanowires.
    Zhou K; Cheng Q; Song J; Lu L; Jia Z; Li J
    Appl Opt; 2018 Jan; 57(1):102-111. PubMed ID: 29328120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optically tunable bianisotropy in a sphere made from an epsilon-near-zero material.
    Abouelatta MAA; Safari A; Zahirul Alam M; Garcia-Santiago X; Beutel D; Cheng L; Boyd RW; Rockstuhl C; Alaee R
    Opt Lett; 2023 Feb; 48(3):783-786. PubMed ID: 36723588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromagnetic properties of magnetic epsilon-near-zero medium with dielectric dopants.
    Zhao L; Feng Y; Zhu B; Zhao J
    Opt Express; 2019 Jul; 27(14):20073-20083. PubMed ID: 31503757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable plasmonics on epsilon-near-zero materials: the case for a quantum carrier model.
    Shabaninezhad M; Ramunno L; Berini P
    Opt Express; 2022 Dec; 30(26):46501-46519. PubMed ID: 36558602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extreme local field enhancement by hybrid epsilon-near-zero-plasmon mode in thin films of transparent conductive oxides.
    Reddy IVAK; Jornet JM; Baev A; Prasad PN
    Opt Lett; 2020 Oct; 45(20):5744-5747. PubMed ID: 33057274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized surface plasmon resonances arising from free carriers in doped quantum dots.
    Luther JM; Jain PK; Ewers T; Alivisatos AP
    Nat Mater; 2011 May; 10(5):361-6. PubMed ID: 21478881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.