These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82. Electrostatic resonances of heterostructures with negative permittivity: homogenization formalisms versus finite-element modeling. Fourn C; Brosseau C Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016603. PubMed ID: 18351947 [TBL] [Abstract][Full Text] [Related]
83. Cyclic Sommerfeld resonances in nanorods at grazing incidences. Feng S; Halterman K; Overfelt PL; Bowling D Opt Express; 2009 Oct; 17(22):19823-41. PubMed ID: 19997204 [TBL] [Abstract][Full Text] [Related]
84. Tunable radiation enhancement and suppression using a pair of photonically doped epsilon-near-zero (ENZ) slabs. Nahvi E; Mencagli MJ; Engheta N Opt Lett; 2022 Mar; 47(6):1319-1322. PubMed ID: 35290303 [TBL] [Abstract][Full Text] [Related]
85. Broadband, Angle- and Polarization-Invariant Antireflective and Absorbing Films by a Scalable Synthesis of Monodisperse Silicon Nanoparticles. Wray PR; Eslamisaray MA; Nelson GM; Ilic O; Kortshagen UR; Atwater HA ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35549027 [TBL] [Abstract][Full Text] [Related]
86. Epsilon-near-zero gratings for polarization selectivity. Qin J; He H; Xu C; Luo J; Lai Y Opt Lett; 2023 Oct; 48(20):5407-5410. PubMed ID: 37831879 [TBL] [Abstract][Full Text] [Related]
87. Non-Periodic Epsilon-Near-Zero Metamaterials at Visible Wavelengths for Efficient Non-Resonant Optical Sensing. Fusco Z; Taheri M; Bo R; Tran-Phu T; Chen H; Guo X; Zhu Y; Tsuzuki T; White TP; Tricoli A Nano Lett; 2020 May; 20(5):3970-3977. PubMed ID: 32343590 [TBL] [Abstract][Full Text] [Related]
88. Switching from visibility to invisibility via Fano resonances: theory and experiment. Rybin MV; Filonov DS; Belov PA; Kivshar YS; Limonov MF Sci Rep; 2015 Mar; 5():8774. PubMed ID: 25739324 [TBL] [Abstract][Full Text] [Related]
89. Investigation on the near-field cutoff effect in a subwavelength plasma shell with near-zero permittivity. Chen P; Nie Q; Lin S; Qian L; Zhang Z; Wang X; Meng Z; Wei G Phys Rev E; 2023 Jun; 107(6-2):065204. PubMed ID: 37464671 [TBL] [Abstract][Full Text] [Related]
90. Giant power enhancement for quasi-omnidirectional light radiation via ε-near-zero materials. Zhong S; Liu T; Huang J; Ma Y Opt Express; 2018 Feb; 26(3):2231-2241. PubMed ID: 29401763 [TBL] [Abstract][Full Text] [Related]
91. Extracting epsilon-near-zero wavelength of ultrathin plasmonic film. Dai X; Wang H; Sun L; Meng C; Li S; Zhang W; Mei T Appl Opt; 2021 Nov; 60(31):9774-9779. PubMed ID: 34807163 [TBL] [Abstract][Full Text] [Related]
92. Epsilon-near-zero characteristics of near-field radiative heat transfer between α-MoO Zhang J; Liu H; Yang B; Hu Y; Sun Y; Wu X Phys Chem Chem Phys; 2023 Jan; 25(2):1133-1138. PubMed ID: 36514985 [TBL] [Abstract][Full Text] [Related]
93. Plasmonic Surface Lattice Resonances: Theory and Computation. Cherqui C; Bourgeois MR; Wang D; Schatz GC Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203 [TBL] [Abstract][Full Text] [Related]
94. Alloying: A Platform for Metallic Materials with On-Demand Optical Response. Rebello Sousa Dias M; Leite MS Acc Chem Res; 2019 Oct; 52(10):2881-2891. PubMed ID: 31305980 [TBL] [Abstract][Full Text] [Related]
95. Magnetic field concentration assisted by epsilon-near-zero media. Liberal I; Li Y; Engheta N Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2090):. PubMed ID: 28219995 [TBL] [Abstract][Full Text] [Related]
96. Plasmonic Lithography Utilizing Epsilon Near Zero Hyperbolic Metamaterial. Chen X; Zhang C; Yang F; Liang G; Li Q; Guo LJ ACS Nano; 2017 Oct; 11(10):9863-9868. PubMed ID: 28968069 [TBL] [Abstract][Full Text] [Related]
98. Dispersion coding of ENZ media via multiple photonic dopants. Zhou Z; Li H; Sun W; He Y; Liberal I; Engheta N; Feng Z; Li Y Light Sci Appl; 2022 Jul; 11(1):207. PubMed ID: 35794087 [TBL] [Abstract][Full Text] [Related]
99. Realizing PIT-like transparency via the coupling of plasmonic dipole and ENZ modes. Mao M; Wang J; Mu K; Fan C; Jia Y; Li R; Chen S; Liang E Opt Express; 2022 Mar; 30(6):8474-8481. PubMed ID: 35299299 [TBL] [Abstract][Full Text] [Related]
100. Design and numerical study of a compact, broadband and low-loss TE-pass polarizer using transparent conducting oxides. Xu Y; Xiao J Opt Express; 2016 Jul; 24(14):15373-82. PubMed ID: 27410813 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]