BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 38238417)

  • 1. PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics.
    Liang Y; Shi G; Cai R; Yuan Y; Xie Z; Yu L; Huang Y; Shi Q; Wang L; Li J; Tang Z
    Nat Commun; 2024 Jan; 15(1):600. PubMed ID: 38238417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating spatially variable gene detection methods for spatial transcriptomics data.
    Chen C; Kim HJ; Yang P
    Genome Biol; 2024 Jan; 25(1):18. PubMed ID: 38225676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SINFONIA: Scalable Identification of Spatially Variable Genes for Deciphering Spatial Domains.
    Jiang R; Li Z; Jia Y; Li S; Chen S
    Cells; 2023 Feb; 12(4):. PubMed ID: 36831270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-modal domain adaptation for revealing spatial functional landscape from spatially resolved transcriptomics.
    Wang L; Hu Y; Xiao K; Zhang C; Shi Q; Chen L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38819253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. STAMarker: determining spatial domain-specific variable genes with saliency maps in deep learning.
    Zhang C; Dong K; Aihara K; Chen L; Zhang S
    Nucleic Acids Res; 2023 Nov; 51(20):e103. PubMed ID: 37811885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in spatially variable gene detection in spatial transcriptomics.
    Das Adhikari S; Yang J; Wang J; Cui Y
    Comput Struct Biotechnol J; 2024 Dec; 23():883-891. PubMed ID: 38370977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A SELECTIVE REVIEW OF RECENT DEVELOPMENTS IN SPATIALLY VARIABLE GENE DETECTION FOR SPATIAL TRANSCRIPTOMICS.
    Adhikari SD; Yang J; Wang J; Cui Y
    ArXiv; 2023 Nov; ():. PubMed ID: 38045476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks.
    Shi X; Zhu J; Long Y; Liang C
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37544658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network.
    Huo Y; Guo Y; Wang J; Xue H; Feng Y; Chen W; Li X
    J Genet Genomics; 2023 Sep; 50(9):720-733. PubMed ID: 37356752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disparities in spatially variable gene calling highlight the need for benchmarking spatial transcriptomics methods.
    Charitakis N; Salim A; Piers AT; Watt KI; Porrello ER; Elliott DA; Ramialison M
    Genome Biol; 2023 Sep; 24(1):209. PubMed ID: 37723583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SPIN-AI: A Deep Learning Model That Identifies Spatially Predictive Genes.
    Meng-Lin K; Ung CY; Zhang C; Weiskittel TM; Wisniewski P; Zhang Z; Tan SH; Yeo KS; Zhu S; Correia C; Li H
    Biomolecules; 2023 May; 13(6):. PubMed ID: 37371475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete spatially resolved gene expression is not necessary for identifying spatial domains.
    Lin S; Cui Y; Zhao F; Yang Z; Song J; Yao J; Zhao Y; Qian BZ; Zhao Y; Yuan Z
    Cell Genom; 2024 Jun; 4(6):100565. PubMed ID: 38781966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder.
    Dong K; Zhang S
    Nat Commun; 2022 Apr; 13(1):1739. PubMed ID: 35365632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DESpace: spatially variable gene detection via differential expression testing of spatial clusters.
    Cai P; Robinson MD; Tiberi S
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38243704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities.
    Miller BF; Bambah-Mukku D; Dulac C; Zhuang X; Fan J
    Genome Res; 2021 Oct; 31(10):1843-1855. PubMed ID: 34035045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimension-agnostic and granularity-based spatially variable gene identification using BSP.
    Wang J; Li J; Kramer ST; Su L; Chang Y; Xu C; Eadon MT; Kiryluk K; Ma Q; Xu D
    Nat Commun; 2023 Nov; 14(1):7367. PubMed ID: 37963892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SMASH: Scalable Method for Analyzing Spatial Heterogeneity of genes in spatial transcriptomics data.
    Seal S; Bitler BG; Ghosh D
    PLoS Genet; 2023 Oct; 19(10):e1010983. PubMed ID: 37862362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially aware self-representation learning for tissue structure characterization and spatial functional genes identification.
    Zhang C; Li X; Huang W; Wang L; Shi Q
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37253698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iIMPACT: integrating image and molecular profiles for spatial transcriptomics analysis.
    Jiang X; Wang S; Guo L; Zhu B; Wen Z; Jia L; Xu L; Xiao G; Li Q
    Genome Biol; 2024 Jun; 25(1):147. PubMed ID: 38844966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HyperGCN: an effective deep representation learning framework for the integrative analysis of spatial transcriptomics data.
    Ma Y; Liu L; Zhao Y; Hang B; Zhang Y
    BMC Genomics; 2024 Jun; 25(1):566. PubMed ID: 38840049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.