These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38238798)
1. Development of Data-driven Machine Learning Models and their Potential Role in Predicting Dengue outbreak. Mazhar B; Ali NM; Manzoor F; Khan MK; Nasir M; Ramzan M J Vector Borne Dis; 2024 Jan; ():. PubMed ID: 38238798 [TBL] [Abstract][Full Text] [Related]
2. Forecasting Dengue Hotspots Associated With Variation in Meteorological Parameters Using Regression and Time Series Models. Patil S; Pandya S Front Public Health; 2021; 9():798034. PubMed ID: 34900929 [TBL] [Abstract][Full Text] [Related]
3. Identification of significant climatic risk factors and machine learning models in dengue outbreak prediction. Yavari Nejad F; Varathan KD BMC Med Inform Decis Mak; 2021 Apr; 21(1):141. PubMed ID: 33931058 [TBL] [Abstract][Full Text] [Related]
4. Artificial Intelligence Approach for Severe Dengue Early Warning System. Anggraini Ningrum DN; Li YJ; Hsu CY; Solihuddin Muhtar M; Pandu Suhito H Stud Health Technol Inform; 2024 Jan; 310():881-885. PubMed ID: 38269935 [TBL] [Abstract][Full Text] [Related]
5. Prediction of dengue outbreak in Selangor Malaysia using machine learning techniques. Salim NAM; Wah YB; Reeves C; Smith M; Yaacob WFW; Mudin RN; Dapari R; Sapri NNFF; Haque U Sci Rep; 2021 Jan; 11(1):939. PubMed ID: 33441678 [TBL] [Abstract][Full Text] [Related]
6. Empirical model for estimating dengue incidence using temperature, rainfall, and relative humidity: a 19-year retrospective analysis in East Delhi. Ramachandran VG; Roy P; Das S; Mogha NS; Bansal AK Epidemiol Health; 2016; 38():e2016052. PubMed ID: 27899025 [TBL] [Abstract][Full Text] [Related]
7. An information value based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence. Nakhapakorn K; Tripathi NK Int J Health Geogr; 2005 Jun; 4():13. PubMed ID: 15943863 [TBL] [Abstract][Full Text] [Related]
8. Three-Month Real-Time Dengue Forecast Models: An Early Warning System for Outbreak Alerts and Policy Decision Support in Singapore. Shi Y; Liu X; Kok SY; Rajarethinam J; Liang S; Yap G; Chong CS; Lee KS; Tan SS; Chin CK; Lo A; Kong W; Ng LC; Cook AR Environ Health Perspect; 2016 Sep; 124(9):1369-75. PubMed ID: 26662617 [TBL] [Abstract][Full Text] [Related]
9. Prediction of dengue incidents using hospitalized patients, metrological and socio-economic data in Bangladesh: A machine learning approach. Dey SK; Rahman MM; Howlader A; Siddiqi UR; Uddin KMM; Borhan R; Rahman EU PLoS One; 2022; 17(7):e0270933. PubMed ID: 35857776 [TBL] [Abstract][Full Text] [Related]
10. Assessing dengue fever risk in Costa Rica by using climate variables and machine learning techniques. Barboza LA; Chou-Chen SW; Vásquez P; García YE; Calvo JG; Hidalgo HG; Sanchez F PLoS Negl Trop Dis; 2023 Jan; 17(1):e0011047. PubMed ID: 36638136 [TBL] [Abstract][Full Text] [Related]
11. Correlation of Dengue and Meteorological Factors in Bangladesh: A Public Health Concern. Islam MA; Hasan MN; Tiwari A; Raju MAW; Jannat F; Sangkham S; Shammas MI; Sharma P; Bhattacharya P; Kumar M Int J Environ Res Public Health; 2023 Mar; 20(6):. PubMed ID: 36982061 [TBL] [Abstract][Full Text] [Related]
12. Meteorological factors cannot be ignored in machine learning-based methods for predicting dengue, a systematic review. Fang L; Hu W; Pan G Int J Biometeorol; 2024 Mar; 68(3):401-410. PubMed ID: 38150020 [TBL] [Abstract][Full Text] [Related]
13. Time series analysis of dengue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as predictors. Gharbi M; Quenel P; Gustave J; Cassadou S; La Ruche G; Girdary L; Marrama L BMC Infect Dis; 2011 Jun; 11():166. PubMed ID: 21658238 [TBL] [Abstract][Full Text] [Related]
14. Enabling countries to manage outbreaks: statistical, operational, and contextual analysis of the early warning and response system (EWARS-csd) for dengue outbreaks. Schlesinger M; Prieto Alvarado FE; Borbón Ramos ME; Sewe MO; Merle CS; Kroeger A; Hussain-Alkhateeb L Front Public Health; 2024; 12():1323618. PubMed ID: 38314090 [TBL] [Abstract][Full Text] [Related]
15. Improving dengue fever predictions in Taiwan based on feature selection and random forests. Kuo CY; Yang WW; Su EC BMC Infect Dis; 2024 Mar; 24(Suppl 2):334. PubMed ID: 38509486 [TBL] [Abstract][Full Text] [Related]
16. A reproducible ensemble machine learning approach to forecast dengue outbreaks. Sebastianelli A; Spiller D; Carmo R; Wheeler J; Nowakowski A; Jacobson LV; Kim D; Barlevi H; Cordero ZER; Colón-González FJ; Lowe R; Ullo SL; Schneider R Sci Rep; 2024 Feb; 14(1):3807. PubMed ID: 38360915 [TBL] [Abstract][Full Text] [Related]
18. The practicality of Malaysia dengue outbreak forecasting model as an early warning system. Ismail S; Fildes R; Ahmad R; Wan Mohamad Ali WN; Omar T Infect Dis Model; 2022 Sep; 7(3):510-525. PubMed ID: 36091345 [TBL] [Abstract][Full Text] [Related]
19. Optimal lead time for dengue forecast. Hii YL; Rocklöv J; Wall S; Ng LC; Tang CS; Ng N PLoS Negl Trop Dis; 2012; 6(10):e1848. PubMed ID: 23110242 [TBL] [Abstract][Full Text] [Related]
20. The association between dengue incidences and provincial-level weather variables in Thailand from 2001 to 2014. Chumpu R; Khamsemanan N; Nattee C PLoS One; 2019; 14(12):e0226945. PubMed ID: 31877191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]