BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38239223)

  • 1. Estimating the frost damage index in lettuce using UAV-based RGB and multispectral images.
    Liu Y; Ban S; Wei S; Li L; Tian M; Hu D; Liu W; Yuan T
    Front Plant Sci; 2023; 14():1242948. PubMed ID: 38239223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of UAV Multisensor Data and Ensemble Approach for High-Throughput Estimation of Maize Phenotyping Traits.
    Shu M; Fei S; Zhang B; Yang X; Guo Y; Li B; Ma Y
    Plant Phenomics; 2022; 2022():9802585. PubMed ID: 36158531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Above-Ground Biomass Estimation in Oats Using UAV Remote Sensing and Machine Learning.
    Sharma P; Leigh L; Chang J; Maimaitijiang M; Caffé M
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Throughput Phenotyping of Fire Blight Disease Symptoms Using Sensing Techniques in Apple.
    Jarolmasjed S; Sankaran S; Marzougui A; Kostick S; Si Y; Quirós Vargas JJ; Evans K
    Front Plant Sci; 2019; 10():576. PubMed ID: 31134116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Karst vegetation coverage detection using UAV multispectral vegetation indices and machine learning algorithm.
    Pan W; Wang X; Sun Y; Wang J; Li Y; Li S
    Plant Methods; 2023 Jan; 19(1):7. PubMed ID: 36691062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-destructive monitoring of maize LAI by fusing UAV spectral and textural features.
    Sun X; Yang Z; Su P; Wei K; Wang Z; Yang C; Wang C; Qin M; Xiao L; Yang W; Zhang M; Song X; Feng M
    Front Plant Sci; 2023; 14():1158837. PubMed ID: 37063231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning for high-throughput field phenotyping and image processing provides insight into the association of above and below-ground traits in cassava (
    Selvaraj MG; Valderrama M; Guzman D; Valencia M; Ruiz H; Acharjee A
    Plant Methods; 2020; 16():87. PubMed ID: 32549903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of Rice Aboveground Biomass by Combining Canopy Spectral Reflectance and Unmanned Aerial Vehicle-Based Red Green Blue Imagery Data.
    Wang Z; Ma Y; Chen P; Yang Y; Fu H; Yang F; Raza MA; Guo C; Shu C; Sun Y; Yang Z; Chen Z; Ma J
    Front Plant Sci; 2022; 13():903643. PubMed ID: 35712565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of Unmanned Aerial Vehicle Based Imagery in Turfgrass Field Trials.
    Zhang J; Virk S; Porter W; Kenworthy K; Sullivan D; Schwartz B
    Front Plant Sci; 2019; 10():279. PubMed ID: 30930917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput Analysis of Leaf Chlorophyll Content in Aquaponically Grown Lettuce Using Hyperspectral Reflectance and RGB Images.
    Taha MF; Mao H; Wang Y; ElManawy AI; Elmasry G; Wu L; Memon MS; Niu Z; Huang T; Qiu Z
    Plants (Basel); 2024 Jan; 13(3):. PubMed ID: 38337925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential of Unmanned Aerial Vehicle Red-Green-Blue Images for Detecting Needle Pests: A Case Study with
    Bai L; Huang X; Dashzebeg G; Ariunaa M; Yin S; Bao Y; Bao G; Tong S; Dorjsuren A; Davaadorj E
    Insects; 2024 Mar; 15(3):. PubMed ID: 38535368
    [No Abstract]   [Full Text] [Related]  

  • 12. Using Unmanned Aerial Vehicle-Based Multispectral Image Data to Monitor the Growth of Intercropping Crops in Tea Plantation.
    Shi Y; Gao Y; Wang Y; Luo D; Chen S; Ding Z; Fan K
    Front Plant Sci; 2022; 13():820585. PubMed ID: 35283919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of Peanut Leaf Area Index from Unmanned Aerial Vehicle Multispectral Images.
    Qi H; Zhu B; Wu Z; Liang Y; Li J; Wang L; Chen T; Lan Y; Zhang L
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi temporal multispectral UAV remote sensing allows for yield assessment across European wheat varieties already before flowering.
    Camenzind MP; Yu K
    Front Plant Sci; 2023; 14():1214931. PubMed ID: 38235203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomass estimation of cultivated red algae Pyropia using unmanned aerial platform based multispectral imaging.
    Che S; Du G; Wang N; He K; Mo Z; Sun B; Chen Y; Cao Y; Wang J; Mao Y
    Plant Methods; 2021 Feb; 17(1):12. PubMed ID: 33541365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining spectral and texture feature of UAV image with plant height to improve LAI estimation of winter wheat at jointing stage.
    Zou M; Liu Y; Fu M; Li C; Zhou Z; Meng H; Xing E; Ren Y
    Front Plant Sci; 2023; 14():1272049. PubMed ID: 38235191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise Monitoring of Soil Salinity in China's Yellow River Delta Using UAV-Borne Multispectral Imagery and a Soil Salinity Retrieval Index.
    Yu X; Chang C; Song J; Zhuge Y; Wang A
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery.
    Lu N; Wang W; Zhang Q; Li D; Yao X; Tian Y; Zhu Y; Cao W; Baret F; Liu S; Cheng T
    Front Plant Sci; 2019; 10():1601. PubMed ID: 31921250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating Maize Genotype Performance under Low Nitrogen Conditions Using RGB UAV Phenotyping Techniques.
    Buchaillot ML; Gracia-Romero A; Vergara-Diaz O; Zaman-Allah MA; Tarekegne A; Cairns JE; Prasanna BM; Araus JL; Kefauver SC
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 30995754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilizing Spectral, Structural and Textural Features for Estimating Oat Above-Ground Biomass Using UAV-Based Multispectral Data and Machine Learning.
    Dhakal R; Maimaitijiang M; Chang J; Caffe M
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.