These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38239276)

  • 1. Versatile vacuum-powered artificial muscles through replaceable external reinforcements.
    Mendoza MJ; Cancán S; Surichaqui S; Centeno E; Vilchez R; Bertoldi K; Vela EA
    Front Robot AI; 2023; 10():1289074. PubMed ID: 38239276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A length-adjustable vacuum-powered artificial muscle for wearable physiotherapy assistance in infants.
    Gollob SD; Mendoza MJ; Koo BHB; Centeno E; Vela EA; Roche ET
    Front Robot AI; 2023; 10():1190387. PubMed ID: 37213243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermo-Pneumatic Artificial Muscle: Air-Based Thermo-Pneumatic Artificial Muscles for Pumpless Pneumatic Actuation.
    Shin J; Jamil B; Moon H; Koo JC; Choi HR; Rodrigue H
    Soft Robot; 2024 Apr; 11(2):187-197. PubMed ID: 37646778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-crossing pneumatic artificial muscles.
    Feng M; Yang D; Ren L; Wei G; Gu G
    Sci Adv; 2023 Sep; 9(38):eadi7133. PubMed ID: 37729399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Soft Bending Actuator Using Combined Positive and Negative Pressures.
    Fatahillah M; Oh N; Rodrigue H
    Front Bioeng Biotechnol; 2020; 8():472. PubMed ID: 32509752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origami-Based Vacuum Pneumatic Artificial Muscles with Large Contraction Ratios.
    Lee JG; Rodrigue H
    Soft Robot; 2019 Feb; 6(1):109-117. PubMed ID: 30339102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fuel-Driven Redox Reactions in Electrolyte-Free Polymer Actuators for Soft Robotics.
    Sarikaya S; Gardea F; Auletta JT; Langrock A; Kim H; Mackie DM; Naraghi M
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31803-31811. PubMed ID: 37345639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid-driven origami-inspired artificial muscles.
    Li S; Vogt DM; Rus D; Wood RJ
    Proc Natl Acad Sci U S A; 2017 Dec; 114(50):13132-13137. PubMed ID: 29180416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Stroke, High-Output-Force, Fabric-Lattice Artificial Muscles for Soft Robots.
    Yang D; Feng M; Gu G
    Adv Mater; 2024 Jan; 36(2):e2306928. PubMed ID: 37672748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Armor-Based Stable Force Pneumatic Artificial Muscles for Steady Actuation Properties.
    Lee JG; Rodrigue H
    Soft Robot; 2022 Jun; 9(3):413-424. PubMed ID: 34097527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soft Origami Optical-Sensing Actuator for Underwater Manipulation.
    Shen Z; Zhao Y; Zhong H; Tang K; Chen Y; Xiao Y; Yi J; Liu S; Wang Z
    Front Robot AI; 2020; 7():616128. PubMed ID: 33778012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Vacuum-Powered Artificial Muscle Designed for Infant Rehabilitation.
    Mendoza MJ; Gollob SD; Lavado D; Koo BHB; Cruz S; Roche ET; Vela EA
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kirigami-Inspired 3D Printable Soft Pneumatic Actuators with Multiple Deformation Modes for Soft Robotic Applications.
    Guo J; Li Z; Low JH; Han Q; Chen CY; Liu J; Liu Z; Yeow CH
    Soft Robot; 2023 Aug; 10(4):737-748. PubMed ID: 36827310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Modular Soft Robotic Wrist for Underwater Manipulation.
    Kurumaya S; Phillips BT; Becker KP; Rosen MH; Gruber DF; Galloway KC; Suzumori K; Wood RJ
    Soft Robot; 2018 Aug; 5(4):399-409. PubMed ID: 29672216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired Three-Dimensional-Printed Helical Soft Pneumatic Actuators and Their Characterization.
    Hu W; Alici G
    Soft Robot; 2020 Jun; 7(3):267-282. PubMed ID: 31687877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Modular Geometrical Framework for Modelling the Force-Contraction Profile of Vacuum-Powered Soft Actuators.
    Gollob SD; Park C; Koo BHB; Roche ET
    Front Robot AI; 2021; 8():606938. PubMed ID: 33763454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vacuum-powered soft actuator with oblique air chambers for easy detachment of artificial dry adhesive by coupled contraction and twisting.
    Yoo SH; Kim M; Park HJ; Lee GI; Lee SH; Kwak MK
    Sci Technol Adv Mater; 2023; 24(1):2274818. PubMed ID: 38024796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of Soft Pneumatic Network Actuators with Oblique Chambers.
    Ge L; Wang T; Zhang N; Gu G
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30176026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Sensing Pneumatic Compressing Actuator.
    Lin N; Zheng H; Li Y; Wang R; Chen X; Zhang X
    Front Neurorobot; 2020; 14():572856. PubMed ID: 33362501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.