These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Evaluation of Hybrid Models to Estimate Chlorophyll and Nitrogen Content of Maize Crops in the Framework of the Future CHIME Mission. Candiani G; Tagliabue G; Panigada C; Verrelst J; Picchi V; Caicedo JPR; Boschetti M Remote Sens (Basel); 2022 Apr; 14(8):1792. PubMed ID: 36081596 [TBL] [Abstract][Full Text] [Related]
6. Leonardo spaceborne infrared payloads for Earth observation: SLSTRs for Copernicus Sentinel 3 and PRISMA hyperspectral camera for PRISMA satellite. Coppo P; Brandani F; Faraci M; Sarti F; Dami M; Chiarantini L; Ponticelli B; Giunti L; Fossati E; Cosi M Appl Opt; 2020 Aug; 59(23):6888-6901. PubMed ID: 32788792 [TBL] [Abstract][Full Text] [Related]
7. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. Berger K; Verrelst J; Féret JB; Hank T; Wocher M; Mauser W; Camps-Valls G Int J Appl Earth Obs Geoinf; 2020 Oct; 92():102174. PubMed ID: 36090128 [TBL] [Abstract][Full Text] [Related]
8. Radiative transfer model inversion using high-resolution hyperspectral airborne imagery - Retrieving maize LAI to access biomass and grain yield. Kayad A; Rodrigues FA; Naranjo S; Sozzi M; Pirotti F; Marinello F; Schulthess U; Defourny P; Gerard B; Weiss M Field Crops Res; 2022 Jun; 282():108449. PubMed ID: 35663617 [TBL] [Abstract][Full Text] [Related]
9. Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data. Estévez J; Salinero-Delgado M; Berger K; Pipia L; Rivera-Caicedo JP; Wocher M; Reyes-Muñoz P; Tagliabue G; Boschetti M; Verrelst J Remote Sens Environ; 2022 May; 273():112958. PubMed ID: 36081832 [TBL] [Abstract][Full Text] [Related]
10. The New Hyperspectral Satellite PRISMA: Imagery for Forest Types Discrimination. Vangi E; D'Amico G; Francini S; Giannetti F; Lasserre B; Marchetti M; Chirici G Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33567591 [TBL] [Abstract][Full Text] [Related]
11. First Evaluation of PRISMA Level 1 Data for Water Applications. Giardino C; Bresciani M; Braga F; Fabbretto A; Ghirardi N; Pepe M; Gianinetto M; Colombo R; Cogliati S; Ghebrehiwot S; Laanen M; Peters S; Schroeder T; Concha JA; Brando VE Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823847 [TBL] [Abstract][Full Text] [Related]
12. Comparison of PRISMA Data with Model Simulations, Hyperion Reflectance and Field Spectrometer Measurements on 'Piano delle Concazze' (Mt. Etna, Italy). Romaniello V; Silvestri M; Buongiorno MF; Musacchio M Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33348634 [TBL] [Abstract][Full Text] [Related]
13. Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. Berger K; Verrelst J; Féret JB; Wang Z; Wocher M; Strathmann M; Danner M; Mauser W; Hank T Remote Sens Environ; 2020 Jun; 242():111758. PubMed ID: 36082364 [TBL] [Abstract][Full Text] [Related]
14. Potential of DESIS and PRISMA hyperspectral remote sensing data in rock classification and mineral identification:a case study for Banswara in Rajasthan, India. Tripathi P; Garg RD Environ Monit Assess; 2023 Apr; 195(5):575. PubMed ID: 37060427 [TBL] [Abstract][Full Text] [Related]
15. Retrieval of carbon content and biomass from hyperspectral imagery over cultivated areas. Wocher M; Berger K; Verrelst J; Hank T ISPRS J Photogramm Remote Sens; 2022 Nov; 193():104-114. PubMed ID: 36643957 [TBL] [Abstract][Full Text] [Related]
16. Integrating a crop growth model and radiative transfer model to improve estimation of crop traits based on deep learning. Chen Q; Zheng B; Chen T; Chapman SC J Exp Bot; 2022 Nov; 73(19):6558-6574. PubMed ID: 35768163 [TBL] [Abstract][Full Text] [Related]
17. Estimating soil moisture content under grassland with hyperspectral data using radiative transfer modelling and machine learning. Döpper V; Rocha AD; Berger K; Gränzig T; Verrelst J; Kleinschmit B; Förster M Int J Appl Earth Obs Geoinf; 2022 Jun; 110():102817. PubMed ID: 36093264 [TBL] [Abstract][Full Text] [Related]
18. Biangular-Combined Vegetation Indices to Improve the Estimation of Canopy Chlorophyll Content in Wheat Using Multi-Angle Experimental and Simulated Spectral Data. Kong W; Huang W; Ma L; Li C; Tang L; Guo J; Zhou X; Casa R Front Plant Sci; 2022; 13():866301. PubMed ID: 35498698 [TBL] [Abstract][Full Text] [Related]
19. A Survey of Active Learning for Quantifying Vegetation Traits from Terrestrial Earth Observation Data. Berger K; Caicedo JPR; Martino L; Wocher M; Hank T; Verrelst J Remote Sens (Basel); 2021 Jan; 13(2):287. PubMed ID: 36081683 [TBL] [Abstract][Full Text] [Related]
20. Global Sensitivity Analysis of Leaf-Canopy-Atmosphere RTMs: Implications for Biophysical Variables Retrieval from Top-of-Atmosphere Radiance Data. Verrelst J; Vicent J; Rivera-Caicedo JP; Lumbierres M; Morcillo-Pallarés P; Moreno J Remote Sens (Basel); 2019 Aug; 11(16):1923. PubMed ID: 36081836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]