These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38239761)

  • 1. WEAK SINDy: GALERKIN-BASED DATA-DRIVEN MODEL SELECTION.
    Messenger DA; Bortz DM
    Multiscale Model Simul; 2021; 19(3):1474-1497. PubMed ID: 38239761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WEAK SINDY FOR PARTIAL DIFFERENTIAL EQUATIONS.
    Messenger DA; Bortz DM
    J Comput Phys; 2021 Oct; 443():. PubMed ID: 34744183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering differential equations from data with hidden variables.
    Somacal A; Barrera Y; Boechi L; Jonckheere M; Lefieux V; Picard D; Smucler E
    Phys Rev E; 2022 May; 105(5-1):054209. PubMed ID: 35706271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domain-driven models yield better predictions at lower cost than reservoir computers in Lorenz systems.
    Pyle R; Jovanovic N; Subramanian D; Palem KV; Patel AB
    Philos Trans A Math Phys Eng Sci; 2021 Apr; 379(2194):20200246. PubMed ID: 33583272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control.
    Fasel U; Kutz JN; Brunton BW; Brunton SL
    Proc Math Phys Eng Sci; 2022 Apr; 478(2260):20210904. PubMed ID: 35450025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics.
    Kaheman K; Kutz JN; Brunton SL
    Proc Math Phys Eng Sci; 2020 Oct; 476(2242):20200279. PubMed ID: 33214760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sparse identification of Lagrangian for nonlinear dynamical systems via proximal gradient method.
    Purnomo A; Hayashibe M
    Sci Rep; 2023 May; 13(1):7919. PubMed ID: 37193704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SINDy-SA framework: enhancing nonlinear system identification with sensitivity analysis.
    Naozuka GT; Rocha HL; Silva RS; Almeida RC
    Nonlinear Dyn; 2022; 110(3):2589-2609. PubMed ID: 36060282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sparsifying priors for Bayesian uncertainty quantification in model discovery.
    Hirsh SM; Barajas-Solano DA; Kutz JN
    R Soc Open Sci; 2022 Feb; 9(2):211823. PubMed ID: 35223066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and prediction of the transmission dynamics of COVID-19 based on the SINDy-LM method.
    Jiang YX; Xiong X; Zhang S; Wang JX; Li JC; Du L
    Nonlinear Dyn; 2021; 105(3):2775-2794. PubMed ID: 34312574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Online Weak-form Sparse Identification of Partial Differential Equations.
    Messenger DA; Dall'anese E; Bortz DM
    Proc Mach Learn Res; 2022 Aug; 190():241-256. PubMed ID: 38264277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sparse identification of nonlinear dynamics for model predictive control in the low-data limit.
    Kaiser E; Kutz JN; Brunton SL
    Proc Math Phys Eng Sci; 2018 Nov; 474(2219):20180335. PubMed ID: 30839858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning mean-field equations from particle data using WSINDy.
    Messenger DA; Bortz DM
    Physica D; 2022 Nov; 439():. PubMed ID: 37476028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning chaotic systems from noisy data via multi-step optimization and adaptive training.
    Zhang L; Tang S; He G
    Chaos; 2022 Dec; 32(12):123134. PubMed ID: 36587345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved sparse identification of nonlinear dynamics with Akaike information criterion and group sparsity.
    Dong X; Bai YL; Lu Y; Fan M
    Nonlinear Dyn; 2023; 111(2):1485-1510. PubMed ID: 36246669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering dynamic models of COVID-19 transmission.
    Liang J; Zhang X; Wang K; Tang M; Tian M
    Transbound Emerg Dis; 2022 Jul; 69(4):e64-e70. PubMed ID: 34320273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sparse learning of stochastic dynamical equations.
    Boninsegna L; Nüske F; Clementi C
    J Chem Phys; 2018 Jun; 148(24):241723. PubMed ID: 29960307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust data-driven discovery of governing physical laws with error bars.
    Zhang S; Lin G
    Proc Math Phys Eng Sci; 2018 Sep; 474(2217):20180305. PubMed ID: 30333709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of data-driven modeling method for nonlinear coupling components.
    Ryu T; Baek S
    Sci Rep; 2024 Jun; 14(1):14841. PubMed ID: 38937632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing model identification with SINDy via nullcline reconstruction.
    Prokop B; Frolov N; Gelens L
    Chaos; 2024 Jun; 34(6):. PubMed ID: 38885073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.