These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 38239830)

  • 1. Chip-In-Loop SNN Proxy Learning: a new method for efficient training of spiking neural networks.
    Liu Y; Liu T; Hu Y; Liao W; Xing Y; Sheik S; Qiao N
    Front Neurosci; 2023; 17():1323121. PubMed ID: 38239830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices.
    Kwon D; Lim S; Bae JH; Lee ST; Kim H; Seo YT; Oh S; Kim J; Yeom K; Park BG; Lee JH
    Front Neurosci; 2020; 14():423. PubMed ID: 32733180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data.
    Stromatias E; Soto M; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2017; 11():350. PubMed ID: 28701911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring Optimized Spiking Neural Network Architectures for Classification Tasks on Embedded Platforms.
    Syed T; Kakani V; Cui X; Kim H
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34067080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing Deeper Spiking Neural Networks for Dynamic Vision Sensing.
    Kim Y; Panda P
    Neural Netw; 2021 Dec; 144():686-698. PubMed ID: 34662827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct training high-performance deep spiking neural networks: a review of theories and methods.
    Zhou C; Zhang H; Yu L; Ye Y; Zhou Z; Huang L; Ma Z; Fan X; Zhou H; Tian Y
    Front Neurosci; 2024; 18():1383844. PubMed ID: 39145295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning With Spiking Neurons: Opportunities and Challenges.
    Pfeiffer M; Pfeil T
    Front Neurosci; 2018; 12():774. PubMed ID: 30410432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spike-Train Level Direct Feedback Alignment: Sidestepping Backpropagation for On-Chip Training of Spiking Neural Nets.
    Lee J; Zhang R; Zhang W; Liu Y; Li P
    Front Neurosci; 2020; 14():143. PubMed ID: 32231513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures.
    Lee C; Sarwar SS; Panda P; Srinivasan G; Roy K
    Front Neurosci; 2020; 14():119. PubMed ID: 32180697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A TTFS-based energy and utilization efficient neuromorphic CNN accelerator.
    Yu M; Xiang T; P S; Chu KTN; Amornpaisannon B; Tavva Y; Miriyala VPK; Carlson TE
    Front Neurosci; 2023; 17():1121592. PubMed ID: 37214405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware.
    Zou C; Cui X; Kuang Y; Liu K; Wang Y; Wang X; Huang R
    Front Neurosci; 2021; 15():694170. PubMed ID: 34867142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. STCA-SNN: self-attention-based temporal-channel joint attention for spiking neural networks.
    Wu X; Song Y; Zhou Y; Jiang Y; Bai Y; Li X; Yang X
    Front Neurosci; 2023; 17():1261543. PubMed ID: 38027490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Backpropagation-Based Learning Techniques for Deep Spiking Neural Networks: A Survey.
    Dampfhoffer M; Mesquida T; Valentian A; Anghel L
    IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):11906-11921. PubMed ID: 37027264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.
    Hao Y; Huang X; Dong M; Xu B
    Neural Netw; 2020 Jan; 121():387-395. PubMed ID: 31593843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advancements in Algorithms and Neuromorphic Hardware for Spiking Neural Networks.
    Javanshir A; Nguyen TT; Mahmud MAP; Kouzani AZ
    Neural Comput; 2022 May; 34(6):1289-1328. PubMed ID: 35534005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gradient-based feature-attribution explainability methods for spiking neural networks.
    Bitar A; Rosales R; Paulitsch M
    Front Neurosci; 2023; 17():1153999. PubMed ID: 37829721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SPIDE: A purely spike-based method for training feedback spiking neural networks.
    Xiao M; Meng Q; Zhang Z; Wang Y; Lin Z
    Neural Netw; 2023 Apr; 161():9-24. PubMed ID: 36736003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.