These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38239918)

  • 1. Multimodal fusion and human-robot interaction control of an intelligent robot.
    Gong T; Chen D; Wang G; Zhang W; Zhang J; Ouyang Z; Zhang F; Sun R; Ji JC; Chen W
    Front Bioeng Biotechnol; 2023; 11():1310247. PubMed ID: 38239918
    [No Abstract]   [Full Text] [Related]  

  • 2. Simulation study on assist-as-needed control of a rehabilitation robotic walker.
    Wang W; Gong T; Song Z; Wang Z; Ji J
    Technol Health Care; 2023; 31(S1):293-302. PubMed ID: 37066930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Man-machine interaction-based motion control of a robotic walker.
    Zhang C; Guo S; Xi FJ
    Technol Health Care; 2021; 29(4):749-769. PubMed ID: 33074202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Modeling and Simulation of a Body Weight Support System.
    Song Z; Chen W; Wang W; Zhang G
    J Healthc Eng; 2020; 2020():2802574. PubMed ID: 32104557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Tandem Robotic Arm Inverse Kinematic Solution Based on an Improved Particle Swarm Algorithm.
    Zhao G; Jiang D; Liu X; Tong X; Sun Y; Tao B; Kong J; Yun J; Liu Y; Fang Z
    Front Bioeng Biotechnol; 2022; 10():832829. PubMed ID: 35662837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force Analysis and Evaluation of a Pelvic Support Walking Robot with Joint Compliance.
    Ji J; Guo S; Xi FJ
    J Healthc Eng; 2018; 2018():9235023. PubMed ID: 30622691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of pelvic movements of a gait training system for stroke patients: a single blind, randomized, parallel study.
    Son C; Lee A; Lee J; Kim D; Kim SJ; Chun MH; Choi J
    J Neuroeng Rehabil; 2021 Dec; 18(1):185. PubMed ID: 34961541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Walking with robot assistance: the influence of body weight support on the trunk and pelvis kinematics.
    Swinnen E; Baeyens JP; Knaepen K; Michielsen M; Hens G; Clijsen R; Goossens M; Buyl R; Meeusen R; Kerckhofs E
    Disabil Rehabil Assist Technol; 2015 May; 10(3):252-7. PubMed ID: 24512196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Techniques for Increasing Efficiency of the Robot's Sensor and Control Information Processing.
    Kondratenko Y; Atamanyuk I; Sidenko I; Kondratenko G; Sichevskyi S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human-Robot-Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker.
    Sierra M SD; Garzón M; Múnera M; Cifuentes CA
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31262036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Safe and Compliant Noncontact Interactive Approach for Wheeled Walking Aid Robot.
    Zhao D; Wang W; Okonkwo MC; Yang Z; Yang J; Liu H
    Comput Intell Neurosci; 2022; 2022():3033920. PubMed ID: 35341193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Smart Robotic Walker With Intelligent Close-Proximity Interaction Capabilities for Elderly Mobility Safety.
    Zhao X; Zhu Z; Liu M; Zhao C; Zhao Y; Pan J; Wang Z; Wu C
    Front Neurorobot; 2020; 14():575889. PubMed ID: 33192437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robot Learning of Assistive Manipulation Tasks by Demonstration via Head Gesture-based Interface.
    Kyrarini M; Zheng Q; Haseeb MA; Graser A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1139-1146. PubMed ID: 31374783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance Hydrogel Sensors Enabled Multimodal and Accurate Human-Machine Interaction System for Active Rehabilitation.
    Wang H; Ding Q; Luo Y; Wu Z; Yu J; Chen H; Zhou Y; Zhang H; Tao K; Chen X; Fu J; Wu J
    Adv Mater; 2024 Mar; 36(11):e2309868. PubMed ID: 38095146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of split-force-controlled body weight support (SF-BWS) robot for gait rehabilitation.
    Takai A; Teramae T; Noda T; Ishihara K; Furukawa JI; Fujimoto H; Hatakenaka M; Fujita N; Jino A; Hiramatsu Y; Miyai I; Morimoto J
    Front Hum Neurosci; 2023; 17():1197380. PubMed ID: 37497041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Randomized controlled trial of robot-assisted gait training with dorsiflexion assistance on chronic stroke patients wearing ankle-foot-orthosis.
    Yeung LF; Ockenfeld C; Pang MK; Wai HW; Soo OY; Li SW; Tong KY
    J Neuroeng Rehabil; 2018 Jun; 15(1):51. PubMed ID: 29914523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research on a New Rehabilitation Robot for Balance Disorders.
    Wu J; Liu Y; Zhao J; Jia Z
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3927-3936. PubMed ID: 37676800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobile Robotic Balance Assistant (MRBA): a gait assistive and fall intervention robot for daily living.
    Li L; Foo MJ; Chen J; Tan KY; Cai J; Swaminathan R; Chua KSG; Wee SK; Kuah CWK; Zhuo H; Ang WT
    J Neuroeng Rehabil; 2023 Mar; 20(1):29. PubMed ID: 36859286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2.
    Yeung LF; Yang Z; Cheng KC; Du D; Tong RK
    Gait Posture; 2021 Jun; 87():19-26. PubMed ID: 33878509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.