These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38239918)

  • 21. SLAM algorithm applied to robotics assistance for navigation in unknown environments.
    Cheein FA; Lopez N; Soria CM; di Sciascio FA; Pereira FL; Carelli R
    J Neuroeng Rehabil; 2010 Feb; 7():10. PubMed ID: 20163735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A multi-camera and multimodal dataset for posture and gait analysis.
    Palermo M; Lopes JM; André J; Matias AC; Cerqueira J; Santos CP
    Sci Data; 2022 Oct; 9(1):603. PubMed ID: 36202855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanical effects of body weight support with a novel robotic walker for over-ground gait rehabilitation.
    Mun KR; Lim SB; Guo Z; Yu H
    Med Biol Eng Comput; 2017 Feb; 55(2):315-326. PubMed ID: 27193227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tip-Over Stability Analysis of a Pelvic Support Walking Robot.
    Han Y; Guo S; Zhang L; Xi FJ; Lu W
    J Healthc Eng; 2020; 2020():1506250. PubMed ID: 32104556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study.
    Hussain S; Jamwal PK; Ghayesh MH
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):626-635. PubMed ID: 28349768
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement Method of Human Lower Limb Joint Range of Motion Through Human-Machine Interaction Based on Machine Vision.
    Wang X; Liu G; Feng Y; Li W; Niu J; Gan Z
    Front Neurorobot; 2021; 15():753924. PubMed ID: 34720913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immediate after-effects of robot-assisted gait with pelvic support or pelvic constraint on overground walking in healthy subjects.
    Alingh JF; Weerdesteyn V; Nienhuis B; van Asseldonk EHF; Geurts ACH; Groen BE
    J Neuroeng Rehabil; 2019 Mar; 16(1):40. PubMed ID: 30876445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. No-code robotic programming for agile production: A new markerless-approach for multimodal natural interaction in a human-robot collaboration context.
    Halim J; Eichler P; Krusche S; Bdiwi M; Ihlenfeldt S
    Front Robot AI; 2022; 9():1001955. PubMed ID: 36274910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a Prototype Overground Pelvic Obliquity Support Robot for Rehabilitation of Hemiplegia Gait.
    Hwang S; Lee S; Shin D; Baek I; Ham S; Kim W
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robot-assisted walking with the Lokomat: the influence of different levels of guidance force on thorax and pelvis kinematics.
    Swinnen E; Baeyens JP; Knaepen K; Michielsen M; Clijsen R; Beckwée D; Kerckhofs E
    Clin Biomech (Bristol, Avon); 2015 Mar; 30(3):254-9. PubMed ID: 25662678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [A pelvic support weight rehabilitation system tracing the human center of mass height].
    He B; Shi P; Li X; Fan M; Deng Z; Yu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):175-184. PubMed ID: 35231979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and analysis of a compatible exoskeleton rehabilitation robot system based on upper limb movement mechanism.
    Ning Y; Wang H; Liu Y; Wang Q; Rong Y; Niu J
    Med Biol Eng Comput; 2024 Mar; 62(3):883-899. PubMed ID: 38081953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Upper-Limb Rehabilitation of Patients with Neuromotor Deficits Using Impedance-Based Control of a 6-DOF Robot.
    Behidj A; Achiche S; Mohebbi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A rehabilitation robot control framework with adaptation of training tasks and robotic assistance.
    Xu J; Huang K; Zhang T; Cao K; Ji A; Xu L; Li Y
    Front Bioeng Biotechnol; 2023; 11():1244550. PubMed ID: 37849981
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An arm for a leg: Adapting a robotic arm for gait rehabilitation.
    Franchi G; Viereck U; Platt R; Yen SC; Hasson CJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3929-32. PubMed ID: 26737153
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activity Recognition for Ambient Assisted Living with Videos, Inertial Units and Ambient Sensors.
    Ranieri CM; MacLeod S; Dragone M; Vargas PA; Romero RAF
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biofeedback for robotic gait rehabilitation.
    Lünenburger L; Colombo G; Riener R
    J Neuroeng Rehabil; 2007 Jan; 4():1. PubMed ID: 17244363
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance.
    Ferrarin M; Rabuffetti M; Geda E; Sirolli S; Marzegan A; Bruno V; Sacco K
    Proc Inst Mech Eng H; 2018 Jun; 232(6):619-627. PubMed ID: 29890931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker: Strategies Based on Virtual Mechanical Stiffness.
    Sierra M SD; Múnera M; Provot T; Bourgain M; Cifuentes CA
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34067133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ROBOGait: A Mobile Robotic Platform for Human Gait Analysis in Clinical Environments.
    Guffanti D; Brunete A; Hernando M; Rueda J; Navarro E
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.