BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38239962)

  • 1. Photochemical activity in developing pea (Pisum sativum L.) cotyledons depends on the light transmittance of covering tissues and the spectral composition of light.
    Smolikova GN; Stepanova NV; Kamionskaya AM; Medvedev SS
    Vavilovskii Zhurnal Genet Selektsii; 2023 Dec; 27(8):980-987. PubMed ID: 38239962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photochemical activity changes accompanying the embryogenesis of pea (Pisum sativum) with yellow and green cotyledons.
    Smolikova G; Kreslavski V; Shiroglazova O; Bilova T; Sharova E; Frolov A; Medvedev S
    Funct Plant Biol; 2018 Jan; 45(2):228-235. PubMed ID: 32291037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of the plastid conversion, photochemical activity and chlorophyll degradation in developing embryos of green-seeded and yellow-seeded pea (Pisum sativum) cultivars.
    Smolikova G; Shiroglazova O; Vinogradova G; Leppyanen I; Dinastiya E; Yakovleva O; Dolgikh E; Titova G; Frolov A; Medvedev S
    Funct Plant Biol; 2020 Apr; 47(5):409-424. PubMed ID: 32209205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of polyaromatic hydrocarbons on photosystem II activity in pea leaves.
    Kreslavski VD; Lankin AV; Vasilyeva GK; Luybimov VY; Semenova GN; Schmitt FJ; Friedrich T; Allakhverdiev SI
    Plant Physiol Biochem; 2014 Aug; 81():135-42. PubMed ID: 24637130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A light-induced decrease in the photochemical reflectance index (PRI) can be used to estimate the energy-dependent component of non-photochemical quenching under heat stress and soil drought in pea, wheat, and pumpkin.
    Yudina L; Sukhova E; Gromova E; Nerush V; Vodeneev V; Sukhov V
    Photosynth Res; 2020 Dec; 146(1-3):175-187. PubMed ID: 32043219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral Composition of Light Affects Sensitivity to UV-B and Photoinhibition in Cucumber.
    Palma CFF; Castro-Alves V; Morales LO; Rosenqvist E; Ottosen CO; Strid Å
    Front Plant Sci; 2020; 11():610011. PubMed ID: 33469462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic Insights into Mechanisms of Early Seed Maturation in the Garden Pea (
    Malovichko YV; Shtark OY; Vasileva EN; Nizhnikov AA; Antonets KS
    Cells; 2020 Mar; 9(3):. PubMed ID: 32210065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids.
    Zhang L; Garneau MG; Majumdar R; Grant J; Tegeder M
    Plant J; 2015 Jan; 81(1):134-46. PubMed ID: 25353986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of organic photovoltaic and red-foil transmittance on yield, growth and photosynthesis of two spinach genotypes under field and greenhouse conditions.
    Ukwu UN; Agbo JU; Muller O; Schrey S; Nedbal L; Niu Y; Meier-Grüll M; Uguru M
    Photosynth Res; 2023 Sep; 157(2-3):103-118. PubMed ID: 37314664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Change in the photochemical and structural organization of thylakoids from pea (Pisum sativum) under salt stress.
    Dhokne K; Pandey J; Yadav RM; Ramachandran P; Rath JR; Subramanyam R
    Plant Physiol Biochem; 2022 Apr; 177():46-60. PubMed ID: 35255419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic alterations in pea leaves during arbuscular mycorrhiza development.
    Shtark OY; Puzanskiy RK; Avdeeva GS; Yurkov AP; Smolikova GN; Yemelyanov VV; Kliukova MS; Shavarda AL; Kirpichnikova AA; Zhernakov AI; Afonin AM; Tikhonovich IA; Zhukov VA; Shishova MF
    PeerJ; 2019; 7():e7495. PubMed ID: 31497392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions.
    Niinemets U ; Kull O
    Tree Physiol; 2001 Aug; 21(12-13):899-914. PubMed ID: 11498337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between the Quantum Efficiencies of Photosystems I and II in Pea Leaves.
    Harbinson J; Genty B; Baker NR
    Plant Physiol; 1989 Jul; 90(3):1029-34. PubMed ID: 16666847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible changes in structure and function of photosynthetic apparatus of pea (Pisum sativum) leaves under drought stress.
    Pandey J; Devadasu E; Saini D; Dhokne K; Marriboina S; Raghavendra AS; Subramanyam R
    Plant J; 2023 Jan; 113(1):60-74. PubMed ID: 36377283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium effects on photosynthetic electron transport in pea (Pisum sativum L.).
    Todorenko D; Timofeev N; Kovalenko I; Kukarskikh G; Matorin D; Antal T
    Planta; 2019 Nov; 251(1):11. PubMed ID: 31776673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoenolpyruvate carboxykinase in developing pea seeds is associated with tissues involved in solute transport and is nitrogen-responsive.
    Delgado-Alvarado A; Walker RP; Leegood RC
    Plant Cell Environ; 2007 Feb; 30(2):225-35. PubMed ID: 17238913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [PS II photochemical efficiency in flag leaf of wheat varieties and its adaptation to strong sun- light intensity on farmland of Xiangride in Qinghai Province, Northwest China].
    Shi SB; Chen WJ; Shi R; Li M; Zhang HG; Sun YN
    Ying Yong Sheng Tai Xue Bao; 2014 Sep; 25(9):2613-22. PubMed ID: 25757313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Magnetic Field with Schumann Resonance Frequencies on Photosynthetic Light Reactions in Wheat and Pea.
    Sukhov V; Sukhova E; Sinitsyna Y; Gromova E; Mshenskaya N; Ryabkova A; Lin N; Vodeneev V; Маreev E; Price C
    Cells; 2021 Jan; 10(1):. PubMed ID: 33451018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds.
    Ferraro K; Jin AL; Nguyen TD; Reinecke DM; Ozga JA; Ro DK
    BMC Plant Biol; 2014 Sep; 14():238. PubMed ID: 25928382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthetic activity of far-red light in green plants.
    Pettai H; Oja V; Freiberg A; Laisk A
    Biochim Biophys Acta; 2005 Jul; 1708(3):311-21. PubMed ID: 15950173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.