BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38240306)

  • 1.
    Giri PS; Bhimani R; Laddha NC; Dwivedi M
    Nucleosides Nucleotides Nucleic Acids; 2024 Jan; ():1-15. PubMed ID: 38240306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic association of nuclear factor of activated T cells' 3'UTR and structural polymorphisms with susceptibility to generalized vitiligo in Gujarat population.
    Giri P; Bhimani R; Patil S; Dwivedi M
    Gene; 2023 Sep; 880():147629. PubMed ID: 37429370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association of FOXP3 and GAGE10 promoter polymorphisms and decreased FOXP3 expression in regulatory T cells with susceptibility to generalized vitiligo in Gujarat population.
    Giri PS; Patel S; Begum R; Dwivedi M
    Gene; 2021 Feb; 768():145295. PubMed ID: 33181260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of NLRP1 genetic variants and mRNA overexpression with generalized vitiligo and disease activity in a Gujarat population.
    Dwivedi M; Laddha NC; Mansuri MS; Marfatia YS; Begum R
    Br J Dermatol; 2013 Nov; 169(5):1114-25. PubMed ID: 23773036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered regulatory T cell-mediated Natural Killer cells suppression may lead to generalized vitiligo.
    Giri PS; Patel SS; Dwivedi M
    Hum Immunol; 2024 Jan; 85(1):110737. PubMed ID: 38057201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased
    Giri PS; Bharti AH; Dwivedi M
    J Immunol Res; 2022; 2022():3426717. PubMed ID: 36157881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The changes of gene expression profiling between segmental vitiligo, generalized vitiligo and healthy individual.
    Wang P; Li Y; Nie H; Zhang X; Shao Q; Hou X; Xu W; Hong W; Xu A
    J Dermatol Sci; 2016 Oct; 84(1):40-49. PubMed ID: 27470284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Relationship between autophagy of melanocytes in patients with vitiligo and clinical types].
    Nie HQ; Wang P; Zhang XY; Ding C; Liu J; Xu AE
    Zhonghua Yi Xue Za Zhi; 2016 Jul; 96(26):2064-9. PubMed ID: 27468618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmental and generalized vitiligo: both forms demonstrate inflammatory histopathological features and clinical mosaicism.
    Attili VR; Attili SK
    Indian J Dermatol; 2013 Nov; 58(6):433-8. PubMed ID: 24249893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genetics of generalized vitiligo: autoimmune pathways and an inverse relationship with malignant melanoma.
    Spritz RA
    Genome Med; 2010 Oct; 2(10):78. PubMed ID: 20959028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of interleukin 1 receptor antagonist intron 2 variable number of tandem repeats polymorphism with vitiligo susceptibility in Gujarat population.
    Singh M; Mansuri MS; Jadeja SD; Marfatia YS; Begum R
    Indian J Dermatol Venereol Leprol; 2018; 84(3):285-291. PubMed ID: 29620037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent progress in the genetics of generalized vitiligo.
    Spritz RA
    J Genet Genomics; 2011 Jul; 38(7):271-8. PubMed ID: 21777851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does autoimmune vitiligo protect against COVID-19 disease?
    Post NF; Luiten RM; Wolkerstorfer A; Bekkenk MW; Böhm M
    Exp Dermatol; 2021 Sep; 30(9):1254-1257. PubMed ID: 34081788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium controlled NFATc1 activation enhances suppressive capacity of regulatory T cells isolated from generalized vitiligo patients.
    Giri PS; Bharti AH; Begum R; Dwivedi M
    Immunology; 2022 Nov; 167(3):314-327. PubMed ID: 35754117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Six decades of vitiligo genetics: genome-wide studies provide insights into autoimmune pathogenesis.
    Spritz RA
    J Invest Dermatol; 2012 Feb; 132(2):268-73. PubMed ID: 21993561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implication of regulatory T cells' telomere shortening in pathogenesis of generalized vitiligo.
    Giri P; Thakor F; Dwivedi M
    Hum Immunol; 2024 May; ():110812. PubMed ID: 38755031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased suppression of CD8
    Giri PS; Dwivedi M; Begum R
    Exp Dermatol; 2020 Aug; 29(8):759-775. PubMed ID: 32682346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interleukin-4 genetic variants correlate with its transcript and protein levels in patients with vitiligo.
    Imran M; Laddha NC; Dwivedi M; Mansuri MS; Singh J; Rani R; Gokhale RS; Sharma VK; Marfatia YS; Begum R
    Br J Dermatol; 2012 Aug; 167(2):314-23. PubMed ID: 22512783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harmine and Kaempferol treatment enhances NFATC1 and FOXP3 mediated regulatory T-cells' suppressive capacity in generalized vitiligo.
    Giri PS; Bharti AH; Kode J; Begum R; Dwivedi M
    Int Immunopharmacol; 2023 Dec; 125(Pt B):111174. PubMed ID: 37951194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A case-control study on association of proteasome subunit beta 8 (PSMB8) and transporter associated with antigen processing 1 (TAP1) polymorphisms and their transcript levels in vitiligo from Gujarat.
    Jadeja SD; Mansuri MS; Singh M; Dwivedi M; Laddha NC; Begum R
    PLoS One; 2017; 12(7):e0180958. PubMed ID: 28700671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.