These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38240664)

  • 1. On phase recovery and preserving early reflections for deep-learning speech dereverberation.
    Luo X; Ke Y; Li X; Zheng C
    J Acoust Soc Am; 2024 Jan; 155(1):436-451. PubMed ID: 38240664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning based speaker separation and dereverberation can generalize across different languages to improve intelligibility.
    Healy EW; Johnson EM; Delfarah M; Krishnagiri DS; Sevich VA; Taherian H; Wang D
    J Acoust Soc Am; 2021 Oct; 150(4):2526. PubMed ID: 34717521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-Frequency Masking in the Complex Domain for Speech Dereverberation and Denoising.
    Williamson DS; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2017 Jul; 25(7):1492-1501. PubMed ID: 30112422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-stage Deep Learning for Noisy-reverberant Speech Enhancement.
    Zhao Y; Wang ZQ; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2019 Jan; 27(1):53-62. PubMed ID: 31106230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speech intelligibility in reverberation with ideal binary masking: effects of early reflections and signal-to-noise ratio threshold.
    Roman N; Woodruff J
    J Acoust Soc Am; 2013 Mar; 133(3):1707-17. PubMed ID: 23464040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Based Target Cancellation for Speech Dereverberation.
    Wang ZQ; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2020; 28():941-950. PubMed ID: 33748324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a dereverberation technique with normal and impaired listeners.
    Bloom PJ
    Br J Audiol; 1982 Aug; 16(3):167-76. PubMed ID: 7171871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep learning algorithm to increase intelligibility for hearing-impaired listeners in the presence of a competing talker and reverberation.
    Healy EW; Delfarah M; Johnson EM; Wang D
    J Acoust Soc Am; 2019 Mar; 145(3):1378. PubMed ID: 31067936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A causal and talker-independent speaker separation/dereverberation deep learning algorithm: Cost associated with conversion to real-time capable operation.
    Healy EW; Taherian H; Johnson EM; Wang D
    J Acoust Soc Am; 2021 Nov; 150(5):3976. PubMed ID: 34852625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A two-stage deep learning algorithm for talker-independent speaker separation in reverberant conditions.
    Delfarah M; Liu Y; Wang D
    J Acoust Soc Am; 2020 Sep; 148(3):1157. PubMed ID: 33003849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Reverberation on Neural Responses to Natural Speech in Rabbit Auditory Midbrain: No Evidence for a Neural Dereverberation Mechanism.
    Barzelay O; David S; Delgutte B
    eNeuro; 2023 May; 10(5):. PubMed ID: 37072174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monaural Speech Dereverberation Using Temporal Convolutional Networks with Self Attention.
    Zhao Y; Wang D; Xu B; Zhang T
    IEEE/ACM Trans Audio Speech Lang Process; 2020; 28():1598-1607. PubMed ID: 33748325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep learning based segregation algorithm to increase speech intelligibility for hearing-impaired listeners in reverberant-noisy conditions.
    Zhao Y; Wang D; Johnson EM; Healy EW
    J Acoust Soc Am; 2018 Sep; 144(3):1627. PubMed ID: 30424625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-channel dereverberation using a non-causal minimum variance distortionless response filter.
    Song MS; Kang HG
    J Acoust Soc Am; 2012 Jul; 132(1):EL29-35. PubMed ID: 22779569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of type of early reflection, clarity of speech, reverberation and diffuse noise on the spatial perception of a speech source and its intelligibility.
    Prodi N; Pellegatti M; Visentin C
    J Acoust Soc Am; 2022 May; 151(5):3522. PubMed ID: 35649908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint Optimization of Deep Neural Network-Based Dereverberation and Beamforming for Sound Event Detection in Multi-Channel Environments.
    Noh K; Chang JH
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32231161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On training targets for deep learning approaches to clean speech magnitude spectrum estimation.
    Nicolson A; Paliwal KK
    J Acoust Soc Am; 2021 May; 149(5):3273. PubMed ID: 34241115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dual-stream deep attractor network with multi-domain learning for speech dereverberation and separation.
    Chen H; Zhang P
    Neural Netw; 2021 Sep; 141():238-248. PubMed ID: 33930565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical Microphone-Based Speech Reconstruction System With Deep Learning for Individuals With Hearing Loss.
    Lin YM; Han JY; Lin CH; Lai YH
    IEEE Trans Biomed Eng; 2023 Dec; 70(12):3330-3341. PubMed ID: 37327105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sixty Years of Frequency-Domain Monaural Speech Enhancement: From Traditional to Deep Learning Methods.
    Zheng C; Zhang H; Liu W; Luo X; Li A; Li X; Moore BCJ
    Trends Hear; 2023; 27():23312165231209913. PubMed ID: 37956661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.