These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 3824069)

  • 1. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression.
    Shirazi-Adl A; Ahmed AM; Shrivastava SC
    Spine (Phila Pa 1976); 1986 Nov; 11(9):914-27. PubMed ID: 3824069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments.
    Shirazi-Adl A; Ahmed AM; Shrivastava SC
    J Biomech; 1986; 19(4):331-50. PubMed ID: 3711133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear gross response analysis of a lumbar motion segment in combined sagittal loadings.
    Shirazi-Adl A; Drouin G
    J Biomech Eng; 1988 Aug; 110(3):216-22. PubMed ID: 3172742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Load-bearing role of facets in a lumbar segment under sagittal plane loadings.
    Shirazi-Adl A; Drouin G
    J Biomech; 1987; 20(6):601-13. PubMed ID: 3611136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poroelastic analysis of lumbar spinal stability in combined compression and anterior shear.
    Lee KK; Teo EC
    J Spinal Disord Tech; 2004 Oct; 17(5):429-38. PubMed ID: 15385884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study.
    Shirazi-Adl SA; Shrivastava SC; Ahmed AM
    Spine (Phila Pa 1976); 1984 Mar; 9(2):120-34. PubMed ID: 6233710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion.
    Ueno K; Liu YK
    J Biomech Eng; 1987 Aug; 109(3):200-9. PubMed ID: 3657107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear stress analysis of the whole lumbar spine in torsion--mechanics of facet articulation.
    Shirazi-Adl A
    J Biomech; 1994 Mar; 27(3):289-99. PubMed ID: 8051189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear finite-element analysis and biomechanical evaluation of the lumbar spine.
    Wong C; Gehrchen PM; Darvann T; Kiaer T
    IEEE Trans Med Imaging; 2003 Jun; 22(6):742-6. PubMed ID: 12872949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-element evaluation of contact loads on facets of an L2-L3 lumbar segment in complex loads.
    Shirazi-Adl A
    Spine (Phila Pa 1976); 1991 May; 16(5):533-41. PubMed ID: 2052996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of passive elements on prediction of intradiscal pressure and muscle activation in lumbar musculoskeletal models.
    Wang K; Wang L; Deng Z; Jiang C; Niu W; Zhang M
    Comput Methods Programs Biomed; 2019 Aug; 177():39-46. PubMed ID: 31319959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical investigation on the influence of the regional material degeneration of an intervertebral disc in a lower lumbar spinal unit: A finite element study.
    Masni-Azian ; Tanaka M
    Comput Biol Med; 2018 Jul; 98():26-38. PubMed ID: 29758454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of human lumbar intervertebral joints. Experimental and finite-element investigations.
    Kasra M; Shirazi-Adl A; Drouin G
    Spine (Phila Pa 1976); 1992 Jan; 17(1):93-102. PubMed ID: 1536019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of axial rotation in the etiology of unilateral disc prolapse. An experimental and finite-element analysis.
    Duncan NA; Ahmed AM
    Spine (Phila Pa 1976); 1991 Sep; 16(9):1089-98. PubMed ID: 1948398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of facet geometry on the axial torque-rotation response of lumbar motion segments.
    Ahmed AM; Duncan NA; Burke DL
    Spine (Phila Pa 1976); 1990 May; 15(5):391-401. PubMed ID: 2363067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical analysis of the influence of nucleus pulposus removal on the biomechanical behavior of a lumbar motion segment.
    Huang J; Yan H; Jian F; Wang X; Li H
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1516-24. PubMed ID: 24893132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc.
    Dooris AP; Goel VK; Grosland NM; Gilbertson LG; Wilder DG
    Spine (Phila Pa 1976); 2001 Mar; 26(6):E122-9. PubMed ID: 11246394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational biomechanics of a lumbar motion segment in pure and combined shear loads.
    Schmidt H; Bashkuev M; Dreischarf M; Rohlmann A; Duda G; Wilke HJ; Shirazi-Adl A
    J Biomech; 2013 Sep; 46(14):2513-21. PubMed ID: 23953504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of injury on rotational coupling at the lumbosacral joint. A biomechanical investigation.
    Oxland TR; Crisco JJ; Panjabi MM; Yamamoto I
    Spine (Phila Pa 1976); 1992 Jan; 17(1):74-80. PubMed ID: 1531557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of ligaments and facets in lumbar spinal stability.
    Sharma M; Langrana NA; Rodriguez J
    Spine (Phila Pa 1976); 1995 Apr; 20(8):887-900. PubMed ID: 7644953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.